974 resultados para Excitonic binding energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rising time of the excitonic luminescence in GaAs/AlGaAs quantum wells is studied as a function of the well width. For well thickness below approximately 20 Angstrom, we find an increase of rising time with decreasing well width. We explain the dependence of the rising time on well width in very thin quantum wells by the slow-down energy relaxation and/or exciton migration processes due to the decrease of the scattering rate of the exciton-acoustic-phonon interaction. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the origin of power law distribution observed in single-molecule conformational dynamics experiments. By establishing a kinetic master equation approach to study statistically the microscopic state dynamics, we show that the underlying landscape with exponentially distributed density of states leads to power law distribution of kinetics. The exponential density of states emerges when the system becomes glassy and landscape becomes rough with significant trapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanide Eu3+ and Tb3+ ions have been widely used in luminescent resonance energy transfer (LRET) for bioassays to study metal binding microenvironments. We report here that Eu3+ or Tb3+ can increase the binding affinity of antitumor antibiotic drug agent, 7-amino actinomycin D (7AACTD), binding to 5'-GT/TG-5' or 5'-GA/AG-5' mismatched stem region of the single-stranded hairpin DNA. Further studies indicate that the effect of Eu3+ or Tb3+ on 7AACTD binding is related to DNA loop sequence. Our results will provide new insights into how metal ions can enhance antitumor agents binding to their targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) binding to human telomeric i-motif DNA can significantly accelerate S1 nuclease cleavage rate by increasing the enzyme turnover number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the kinetics of the biomolecular binding process at the interface using energy landscape theory. The global kinetic connectivity case is considered for a downhill funneled energy landscape. By solving the kinetic master equation, the kinetic time for binding is obtained and shown to have a U-shape curve-dependence on the temperature. The kinetic minimum of the binding time monotonically decreases when the ratio of the underlying energy gap between native state and average non-native states versus the roughness or the fluctuations of the landscape increases. At intermediate temperatures,fluctuations measured by the higher moments of the binding time lead to non-Poissonian, non-exponential kinetics. At both high and very low temperatures, the kinetics is nearly Poissonian and exponential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the binding of neutral red (NR) to bovine serum albumin (BSA) under physiological conditions has been studied by spectroscopy method including fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The Stern-Volmer fluorescence quenching constant (K-SV), binding constant (K-b) and the number of binding sites (It) were measured by fluorescence quenching method. Fluorescence experiments were also performed at different ionic strengths. It was found K-SV was ionic strength dependent, which indicated the electrostatic interactions were part of the binding forces. The distance r between donor (BSA) and acceptor (NR) was obtained according to Foster's non-radiative energy transfer theory. CD spectroscopy and FT-IR spectroscopy were used to investigate the structural information of BSA molecules on the binding of NR, and the results showed no change of BSA conformation in our experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of associations between two biomolecules is the key to understanding molecular function and recognition. Molecular function is often thought to be determined by underlying structures. Here, combining a single-molecule study of protein binding with an energy-landscape-inspired microscopic model, we found strong evidence that biomolecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse-grained molecular dynamics on the residue level with the energy function biased toward the native binding structure ( the Go model). With our model, the underlying free-energy landscape of the binding can be explored. There are two distinct conformational states at the free-energy minimum, one with partial folding of CBD itself and significant interface binding of CBD to Cdc42, and the other with native folding of CBD itself and native interface binding of CBD to Cdc42. This shows that the binding process proceeds with a significant interface binding of CBD with Cdc42 first, without a complete folding of CBD itself, and that binding and folding are then coupled to reach the native binding state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenolic marine natural product is a kind of new potential aldose reductase inhibitors (ARIs). In order to investigate the binding mode and inhibition mechanism, molecular docking and dynamics studies were performed to explore the interactions of six phenolic inhibitors with human aldose reductase (hALR2). Considering physiological environment, all the neutral and other two ionized states of each phenolic inhibitor were adopted in the simulation. The calculations indicate that all the inhibitors are able to form stable hydrogen bonds with the hALR2 active pocket which is mainly constructed by residues TYR48, HIS110 and TRP111, and they impose the inhibition effect by occupying the active space. In all inhibitors, only La and its two ionized derivatives La_ion1 and La_ion2, in which neither of the ortho-hydrogens of 3-hydroxyl is substituted by Br, bind with hALR2 active residues using the terminal 3-hydroxyl. While, all the other inhibitors, at least one of whose ortho-sites of 3- and 6-hydroxyls are substituted by Br substituent which take much electron-withdrawing effect and steric hindrance, bind with hALR2 through the lactone group. This means that the Br substituent can effectively regulate the binding modes of phenolic inhibitors. Although the lactone bound inhibitors have relatively high RMSD values, our dynamics study shows that both binding modes are of high stability. For each inhibitor molecule, the ionization does not change its original binding mode, but it does gradually increase the binding free energy, which reveals that besides hydrogen bonds, the electrostatic effect is also important to the inhibitor–hALR2 interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming and its link to the burning of fossil fuels has prompted many governments around the world to set legally binding greenhouse gas reduction targets which are to be partially realised through a stronger reliance on renewable (e.g. wind) and other lower carbon (i.e. natural gas and nuclear) energy commodities. The marine environment will play a key role in hosting or supporting these new energy strategies. However, it is unclear how the construction, operation and eventual decommissioning of these energy systems, and their related infrastructure, will impact the marine environment, the ecosystem services (i.e. cultural, regulating, provisioning and supporting) and in turn the benefits it provides for human well-being. This uncertainty stems from a lack of research that has synthesised into a common currency the various effects of each energy sector on marine ecosystems and the benefits humans derive from it. To address this gap, the present study reviews existing ecosystem impact studies for offshore components of nuclear, offshore wind, offshore gas and offshore oil sectors and translates them into the common language of ecosystem service impacts that can be used to evaluate current policies. The results suggest that differences exist in the way in which energy systems impact ecosystem services, with the nuclear sector having a predominantly negative impact on cultural ecosystem services; oil and gas a predominately negative impact on cultural, provisioning, regulating and supporting ecosystem services; while wind has a mix of impacts on cultural, provisioning and supporting services and an absence of studies for regulating services. This study suggests that information is still missing with regard to the full impact of these energy sectors on specific types of benefits that humans derive from the marine environment and proposes possible areas of targeted research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective the study was to determine the levels of glucose and triglycerides in seminal plasma of 10 guinea pigs, which were fed for a period of 2 months with a diet containing 10% more ED. The level of glucose found in seminal plasma was 11.59 ± 0.5 mg/dL and triglyceride value was 55.95 ± 3.2 mg/dL, while the motility was 97% on average. We conclude that in guinea pigs the levels both glucose and triglycerides were increased by major level of ED in feed, but the spermatic motility was not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every aerobic organism expresses cytochrome c oxidase to catalyze reduction of molecular oxygen to water, and takes advantage of this energy releasing reaction to produce an electrochemical gradient used in cellular energy production. The protein SCO (Synthesis of cytochrome c oxidase) is a required assembly factor for the oxidase, conserved across many species. SCO is implicated in the assembly of one of two copper centres (ie., CuA) of cytochrome oxidase. The exact mechanism of SCO’s participation in CuA assembly is not known. SCO has been proposed to bind and deliver copper, or alternatively to act in reductive preparation of the CuA site within the oxidase. In this body of work, the strength and stability of Cu(II) binding to Bacillus subtilis SCO is explored via electronic absorption and fluorescence spectroscopies and by calorimetric methods. An equilibrium dissociation constant (Kd) of 3.5x10-12 M was determined as an upper limit for the BsSCO-Cu(II) interaction, via differential scanning calorimetry. In the first reported case for a SCO homolog, dissociation kinetics of Cu(II) from BsSCO were characterized, and found to be dependent on both ionic strength and the presence of free Cu(II) in solution. Further differential scanning calorimetry experiments performed at high ionic strength support a two-step model of BsSCO and Cu(II) binding. The implications of this model for the BsSCO-Cu(II) interaction are presented in relation to the mechanism of interaction between SCO and the CuA site of cytochrome c oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.