939 resultados para Dynamic Threshold Algorithm
Resumo:
The purpose of this study was to evaluate the influence of stress and anxiety on the pressure pain threshold (PPT) of masticatory muscles and on the subjective pain report. Forty-five women, students, with mean age of 19.75 years, were divided into two groups: group 1:29 presenting with masticatory myofascial pain (MFP), according to the Research Diagnostic Criteria for Temporomandibular Disorders and group 2: 16 asymptomatic controls. An electronic algometer registered the pain thresholds on four different occasions throughout the academic year. To measure levels of stress, anxiety and pain, the Beck Anxiety Inventory, Lipp Stress Symptoms Inventory and Visual Analog Scale (VAS) were used. Three-way anova and Tukey`s tests were used to verify differences in PPT between groups, times and sites. Levels of anxiety and VAS were compared using Mann-Whitney test, while Friedman`s test was used for the within-groups comparison at different times (T1 to T4). The chi-squared and Cochran tests were performed to compare groups for the proportion of subjects with stress (alpha = 0.05). Differences in PPT recordings between time (P = 0.001) and sites (P < 0.001) were detected. Higher levels of anxiety and lower PPT figures were detected at T2 (academic examination) (P = 0.001). There was no difference between groups for anxiety and stress at any time (P > 0.05). The MFP group also has shown significant increase of VAS at the time of academic examination (P < 0.001). External stressors such as academic examinations have a potential impact on masticatory muscle tenderness, regardless of the presence of a previous condition such as masticatory myofascial pain.
Resumo:
Objective. The aim of this study was to investigate the influence of the menstrual cycle and oral contraceptive (OC) intake on the pressure pain threshold (PPT) of masticatory muscles in patients with masticatory myofascial pain (MFP). Study design. The sample was composed of 36 women, divided into 4 groups, according to the presence of MFP and the intake of OC (15 patients had MFP [7 taking OC] and 21 were pain-free controls [8 taking OC]). The algometer-based PPT of masseter and temporalis, and the record of subjective pain by visual analog scale (VAS) were determined during 2 consecutives menstrual cycles at 4 phases (menstrual, follicular, periovulatory, and luteal). A 3-way ANOVA for repeated measurements, Kruskal-Wallis, Friedman, and Dunn tests, with a 5% significant level analyzed the data. Results. PPT was significantly lower in MFP patients when compared with controls throughout the experiment (P < .001). The menstrual phases did not influence PPT (P > .05), while the intake of OC seems to raise PPT levels for the left temporalis (P = .01) and right masseter (P = .04). VAS was, in general, higher at the menstrual phase Conclusions. Different phases of the menstrual cycle have no influence on PPT values, regardless of the presence of a previous condition, as masticatory myofascial pain, while the intake of OC is associated with decreased levels of reported pain.
Resumo:
A question is examined as to estimates of the norms of perturbations of a linear stable dynamic system, under which the perturbed system remains stable in a situation R:here a perturbation has a fixed structure.
Resumo:
Palpation for tenderness forms an important part of the manual therapy assessment for musculoskeletal dysfunction, In conjunction with other testing procedures it assists in establishing the clinical diagnosis. Tenderness in the thoracic spine has been reported in the literature as a clinical feature in musculoskeletal conditions where pain and dysfunction are located primarily in the upper quadrant. This study aimed to establish whether pressure pain thresholds (PPTs) of the mid-thoracic region of asymptomatic subjects were naturally lower than those of the cervical and lumbar areas. A within-subject study design was used to examine PPT at four spinal levels C6, T4, T6, and L4 in 50 asymptomatic volunteers. Results showed significant (P < 0.001) regional differences. PPT values increased in a caudal direction. The cervical region had the lowest PPT scores, that is was the most tender. Values increased in the thoracic region and were highest in the lumbar region. This study contributes to the normative data on spinal PPT values and demonstrates that mid-thoracic tenderness relative to the cervical spine is not a normal finding in asymptomatic subjects. (C) 2001 Harcourt Publishers Ltd.
Resumo:
A dynamic modelling methodology, which combines on-line variable estimation and parameter identification with physical laws to form an adaptive model for rotary sugar drying processes, is developed in this paper. In contrast to the conventional rate-based models using empirical transfer coefficients, the heat and mass transfer rates are estimated by using on-line measurements in the new model. Furthermore, a set of improved sectional solid transport equations with localized parameters is developed in this work to reidentified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.place the global correlation for the computation of solid retention time. Since a number of key model variables and parameters are identified on-line using measurement data, the model is able to closely track the dynamic behaviour of rotary drying processes within a broad range of operational conditions. This adaptive model is validated against experimental data obtained from a pilot-scale rotary sugar dryer. The proposed modelling methodology can be easily incorporated into nonlinear model based control schemes to form a unified modelling and control framework.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
The acquisition of movement skills: Practice enhances the dynamic stability of bimanual coordination
Resumo:
During bimanual movements, two relatively stable inherent patterns of coordination (in-phase and anti-phase) are displayed (e.g., Kelso, Am. J. Physiol. 246 (1984) R1000). Recent research has shown that new patterns of coordination can be learned. For example, following practice a 90 degrees out-of-phase pattern can emerge as an additional, relatively stable, state (e.g., Zanone & Kelso, J. Exp. Psychol.: Human Performance and Perception 18 (1992) 403). On this basis, it has been concluded that practice leads to the evolution and stabilisation of the newly learned pattern and that this process of learning changes the entire attractor layout of the dynamic system. A general feature of such research has been to observe the changes of the targeted pattern's stability characteristics during training at a single movement frequency. The present study was designed to examine how practice affects the maintenance of a coordinated pattern as the movement frequency is scaled. Eleven volunteers were asked to perform a bimanual forearm pronation-supination task. Time to transition onset was used as an index of the subjects' ability to maintain two symmetrically opposite coordinated patterns (target task - 90 degrees out-of-phase - transfer task - 270 degrees out-of-phase). Their ability to maintain the target task and the transfer task were examined again after five practice sessions each consisting of 15 trials of only the 90 degrees out-of-phase pattern. Concurrent performance feedback (a Lissajous figure) was available to the participants during each practice trial. A comparison of the time to transition onset showed that the target task was more stable after practice (p = 0.025). These changes were still observed one week (p = 0.05) and two months (p = 0.075) after the practice period. Changes in the stability of the transfer task were not observed until two months after practice (p = 0.025). Notably, following practice, transitions from the 90 degrees pattern were generally to the anti-phase (180 degrees) pattern, whereas, transitions from the 270 degrees pattern were to the 90 degrees pattern. These results suggest that practice does improve the stability of a 90 degrees pattern, and that such improvements are transferable to the performance of the unpractised 270 degrees pattern. In addition, the anti-phase pattern remained more stable than the practised 90 degrees pattern throughout. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.
Resumo:
A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.
Resumo:
Primary olfactory neurons are located in the olfactory neuroepithelium lining the nasal cavity. Their axons converge and form glomeruli with the dendrites of second-order neurons in the olfactory bulb. The molecular basis of primary olfactory axon guidance, targeting and subsequent arborisation is largely unknown. In this study we examined the spatio-temporal expression of the Eph receptor EphB2 and its ligands, ephrin-B1 and ephrin-B2, during development of the rat primary olfactory system. Unlike in other regions of the nervous system where receptor and ligand expression patterns are usually non-overlapping, EphB2, ephrin-B1 and ephrin-B2 were all expressed by primary and second-order olfactory neurons. In the embryonic animal we found that these three proteins had distinct and different expression patterns. EphB2 was first expressed at E18.5 by the perikarya of primary olfactory neurons. In contrast, ephrin-B1 was expressed from E13.5 and was localised to the axons of these cells up to E18.5 but was then restricted to the perikarya. Ephrin-B2, however, was expressed by olfactory ensheathing cells. EphB2, ephrin-B1 and ephrin-B2 were also expressed in the prenatal olfactory bulb and were restricted to the perikarya of mitral cells. In the post-natal olfactory bulb there was a shift in the localisation of both EphB2 and ephrin-B1 to the dendritic arborisations of mitral cells. The dynamic and tightly regulated spatio-temporal expression patterns of EphB2, ephrin-B1 and ephrin-B2 by specific olfactory cell populations suggest that these molecules have the potential to regulate important developmental events in the olfactory system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The study to be presented is the first to use a new physiological device, the electromagnetic articulograph, to assess articulatory dysfunction in children with acquired brain injury. Two children with dysarthria subsequent to acquired brain injury participated in the study. One child, a female aged 12 years 9 months exhibited a mild-moderate ataxic dysarthria following traumatic head injury while the other, a male aged 13 years 10 months, demonstrated a moderate-severe flaccid-ataxic dysarthria also following traumatic head injury. The speed and accuracy of their tongue movements was assessed using the Carstens AG100 electromagnetic articulograph. Movement trajectories together with a range of quantitative kinematic parameters were estimated during performance of ten repetitions of the lingual consonants /t, s, k/ and consonant cluster /kl/ in the word initial position of single syllable words. A group of ten non-neurologically impaired children served as controls. Examination of the kinematic parameters, including movement trajectories, velocity, acceleration, deceleration, distance travelled and duration of movement, revealed differences in the speed and accuracy of the tongue movements in both children with acquired brain injury compared to those produced by the non-neurologically impaired controls. The results are discussed in relation to contemporary theories of the effects of acquired brain injury on neuromuscular function. The implications of the findings for the treatment of articulatory dysfunction in children with motor speech disorders associated with acquired brain injury are highlighted.
Resumo:
A new method to extract MOSFET's threshold voltage VT by measurement of the gate-to-substrate capacitance C-gb of the transistor is presented. Unlike existing extraction methods based on I-V data, the measurement of C-gb does not require de drain current to now between drain and source thus eliminating the effects of source and drain series resistance R-S/D, and at the same time, retains a symmetrical potential profile across the channel. Experimental and simulation results on devices with different sizes are presented to justify the proposed method.
Resumo:
A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the spatial dynamics of Sry transcription in the genital ridges of mouse embryos. We find that Sry is expressed in a dynamic wave that emanates from the central and/or anterior regions, extends subsequently to both poles, and ends in the caudal pole. This dynamism may explain the relative positioning of ovarian and testicular tissue seen in ovotestes in mice. Since direct regulatory targets of SRY ought to be expressed in a corresponding or complimentary wave, our observations pave the way for identification of target genes. Sry is expressed in internal cells but not in coelomic surface epithelial cells, indicating that its effect on proliferation of surface cells is achieved non-cell-autonomously. The cellular dynamism of Sry expression revealed in this study thus provides important insights into both the cellular and molecular mode of action of SRY, and how perturbations in Sry expression can lead to anomalies of sexual development. (C) 2001 Wiley-Liss, Inc.