978 resultados para Division of Chemical Sciences
Resumo:
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined
Resumo:
The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
13 minute interview in which Professor May discusses his thoughts on the purpose of clinical research.
Resumo:
Mp3 format
Resumo:
Educating health professionals implies the challenge of creating and developing an inquiring mind, ready to be in a state of permanent questioning. For this purpose, it is fundamental to generate a positive attitude toward the generation of knowledge and science. Objective: to determine the attitude toward science and the scientific method in undergraduate students of health sciences. Materials and methods: a cross-sectional study was made by applying a self-administered survey, excluding those who were transferred from other universities and repeated. The attitude toward science and the scientific method were valued using the scale validated and published by Hren, which contains three domains: value of scientific knowledge, value of scientific methodology, and value of science for health professions. Results: 362 students were included, 86,6% of them graded the attitude toward scientific knowledge above 135 points, neutral scale value. Similar scores were registered in the domains value of scientific knowlede for the human dimension of the students and value of science for health professions. 91,4% of the students graded the value of scientific methodology below 48 points. Conclusions: the favorable attitude of the students can be explained by the contact that they have with the scientific method since the beginning of their studies and its concordance with the evolution of science. The domain value of scientific methodology obtained the lowest grade on the part of the students, which could be related to the lack of knowledge about scientific methodology.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
L'Espai Europeu d'Educació Superior s'ha convertit en un repte, un desafiament que implica assolir una convergència de titulacions universitàries equivalents. Per això es requereix una modificació del tradicional ensenyament, en el nostre cas, de la psicologia. En aquest article s'examina l'ensenyament de la psicologia al Institute of Psychological Sciences de la Universitat de Leeds (metodologia docent; avaluació i contingut curricular)
Resumo:
Interactions between electrons determine the structure and properties of matter from molecules to solids. Therefore, the understanding of the electronic structure of molecules will enable us to extract relevant chemical information. In the first part of this thesis, we focus our attention on the analysis of chemical bonding by means of the Electron Localization Function (ELF) and the Domain-Averaged Fermi Hole analysis (DAFH). In the second part, we assess the performance of some indicators of aromaticity by analyzing their advantages and drawbacks. We propose a series of tests based on well-known aromaticity trends that can be applied to evaluate the aromaticity of current and future indicators of aromaticity in both organic and inorganic species. Moreover, we investigate the nature of electron delocalization in both aromatic and antiaromatic systems in the light of Hückel’s (4n + 2) rule. Finally, we analyze the phenomenon of multiple aromaticity in all-metal clusters.
Resumo:
The chemical contamination of natural waters is a global problem with a worldwide impact. Considering the relevance of this problem, this thesis is intended, on one hand, to develop different separation/preconcentration techniques based on membranes ability to permeate anions for the transport of toxic oxyanions of chromium(VI) and arsenic contained in aqueous matrices. In particular, we have investigated supported liquid membranes and polymer inclusion membranes, both of which contain the commercial quaternary ammonium salt Aliquat 336 as a carrier, as well as commercial anion exchange membranes. On the other hand, we have focused on the development of chemical sensors to facilitate the monitoring of several metals from different aqueous matrices. Thus, a selective optical sensor for Cr(VI) based on polymeric membranes containing Aliquat 336 as an ionophore has been designed. Additionally, mercury-based screen-printed electrodes have been evaluated for for cadmium, lead, copper and zinc detection.