526 resultados para Biophotonen, gequetschtes Licht, nichtklassische Zustände
Resumo:
The mixing of nanoparticles with polymers to form composite materials has been applied for decades. They combine the advantages of polymers (e.g., elasticity, transparency, or dielectric properties) and inorganic nanoparticles (e.g., specific absorption of light, magneto resistance effects, chemical activity, and catalysis etc.). Nanocomposites exhibit several new characters that single-phase materials do not have. Filling the polymeric matrix with an inorganic material requires its homogeneous distribution in order to achieve the highest possible synergetic effect. To fulfill this requirement, the incompatibility between the filler and the matrix, originating from their opposite polarity, has to be resolved. A very important parameter here is the strength and irreversibility of the adsorption of the surface active compound on the inorganic material. In this work the Isothermal titration calorimetry (ITC) was applied as a method to quantify and investigate the adsorption process and binding efficiencies in organic-inorganic–hybrid-systems by determining the thermodynamic parameters (ΔH, ΔS, ΔG, KB as well as the stoichiometry n). These values provide quantification and detailed understanding of the adsorption process of surface active molecules onto inorganic particles. In this way, a direct correlation between the adsorption strength and structure of the surface active compounds can be achieved. Above all, knowledge of the adsorption mechanism in combination with the structure should facilitate a more rational design into the mainly empirically based production and optimization of nanocomposites.
Resumo:
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. \\rnThe only known theoretical, non-perturbative and {\it ab initio} method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations.rnrnThis thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses.\\rnFirst of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be $m_{ud}^{\overline{\text{MS}}}(2\text{ GeV}) = 3.03(17)(38)\text{ MeV}$. This value is in good agreement with values from experiments and other lattice determinations.\\rnElectro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass.\newpage Finally we perform a continuum extrapolation and chiral extrapolations to the physical point.\\rnIn addition, we investigated so called excited state contributions to these observables. A technique was used, the summation method, which reduces these effects significantly and a much better agreement with experimental data was achieved. On the lattice, the Dirac radius and the axial charge are usually found to be much smaller than the experimental values. However, due to the carefully investigation of all the afore-mentioned systematic effects we get $\langle r_1^2\rangle_{u-d}=0.627(54)\text{ fm}^2$ and $g_A=1.218(92)$, which is in agreement with the experimental values within the errors.rnrnThe first three chapters introduce the theoretical background of form factors of the nucleon and lattice QCD in general. In chapter four the lattice spacing is determined. The computation of nucleon form factors is described in chapter five where systematic effects are investigated. All results are presented in chapter six. The thesis ends with a summary of the results and identifies options to complement and extend the calculations presented. rn
Resumo:
Die Elektronen in wasserstoff- und lithium-ähnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frühere Messungen an wasserstoffähnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgeführt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der großen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschöpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-ähnliche schwere Ionen mit einer um 2-3 Größenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwärtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell für die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang für die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang für die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewünschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Kühlprozess für die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Kühlung in einer lasergekühlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle für die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkörperlasersystem für die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlänge und erwies sich während der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlässig. Desweiteren wurde eine Ionequelle für die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoßionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbündel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekühlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lässt sich sowohl die Sensitivität auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Größenordnung von ≈ 100 mK nach wenigen Sekunden Kühlzeit belegen.
Resumo:
This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn
Resumo:
Methane is the most abundant reduced organic compound in the atmosphere. As the strongest known long-lived greenhouse gas after water vapour and carbon dioxide methane perturbs the radiation balance of Earth’s atmosphere. The abiotic formation of methane requires ultraviolet irradiation of organic matter or takes place in locations with high temperature and/or pressure, e.g. during biomass burning or serpentinisation of olivine, under hydrothermal conditions in the oceans deep or below tectonic plates. The biotic methane formation was traditionally thought to be formed only by methanogens under strictly anaerobic conditions, such as in wetland soils, rice paddies and agricultural waste. rnIn this dissertation several chemical pathways are described which lead to the formation of methane under aerobic and ambient conditions. Organic precursor compounds such as ascorbic acid and methionine were shown to release methane in a chemical system including ferrihydrite and hydrogen peroxide in aquatic solution. Moreover, it was shown by using stable carbon isotope labelling experiments that the thio-methyl group of methionine was the carbon precursor for the methane produced. Methionine, a compound that plays an important role in transmethylation processes in plants was also applied to living plants. Stable carbon isotope labelling experiments clearly verified that methionine acts as a precursor compound for the methane from plants. Further experiments in which the electron transport chain was inhibited suggest that the methane generation is located in the mitochondria of the plants. The abiotic formation of methane was shown for several soil samples. Important environmental parameter such as temperature, UV irradiation and moisture were identified to control methane formation. The organic content of the sample as well as water and hydrogen peroxide might also play a major role in the formation of methane from soils. Based on these results a novel scheme was developed that includes both biotic and chemical sources of methane in the pedosphere.rn
Resumo:
Small molecules affecting biological processes in plants are widely used in agricultural practice as herbicides or plant growth regulators and in basic plant sciences as probes to study the physiology of plants. Most of the compounds were identified in large screens by the agrochemical industry, as phytoactive natural products and more recently, novel phytoactive compounds originated from academic research by chemical screens performed to induce specific phenotypes of interest. The aim of the present PhD thesis is to evaluate different approaches used for the identification of the primary mode of action (MoA) of a phytoactive compound. Based on the methodologies used for MoA identification, three approaches are discerned: a phenotyping approach, an approach based on a genetic screen and a biochemical screening approach.rnFour scientific publications resulting from my work are presented as examples of how a phenotyping approach can successfully be applied to describe the plant MoA of different compounds in detail.rnI. A subgroup of cyanoacrylates has been discovered as plant growth inhibitors. A set of bioassays indicated a specific effect on cell division. Cytological investigations of the cell division process in plant cell cultures, studies of microtubule assembly with green fluorescent protein marker lines in vivo and cross resistant studies with Eleusine indica plants harbouring a mutation in alpha-tubulin, led to the description of alpha-tubulin as a target site of cyanoacrylates (Tresch et al., 2005).rnII. The MoA of the herbicide flamprop-m-methyl was not known so far. The studies described in Tresch et al. (2008) indicate a primary effect on cell division. Detailed studies unravelled a specific effect on mitotic microtubule figures, causing a block in cell division. In contrast to other inhibitors of microtubule rearrangement such as dinitroanilines, flamprop-m-methyl did not influence microtubule assembly in vitro. An influence of flamprop-m-methyl on a target within the cytoskeleton signalling network could be proposed (Tresch et al., 2008).rnIII. The herbicide endothall is a protein phosphatase inhibitor structurally related to the natural product cantharidin. Bioassay studies indicated a dominant effect on dark-growing cells that was unrelated to effects observed in the light. Cytological characterisation of the microtubule cytoskeleton in corn tissue and heterotrophic tobacco cells showed a specific effect of endothall on mitotic spindle formation and ultrastructure of the nucleus in combination with a decrease of the proliferation index. The observed effects are similar to those of other protein phosphatase inhibitors such as cantharidin and the structurally different okadaic acid. Additionally, the observed effects show similarities to knock-out lines of the TON1 pathway, a protein phosphatase-regulated signalling pathway. The data presented in Tresch et al. (2011) associate endothall’s known in vitro inhibition of protein phosphatases with in vivo-effects and suggest an interaction between endothall and the TON1 pathway.rnIV. Mefluidide as a plant growth regulator induces growth retardation and a specific phenotype indicating an inhibition of fatty acid biosynthesis. A test of the cuticle functionality suggested a defect in the biosynthesis of very-long-chain fatty acids (VLCFA) or waxes. Metabolic profiling studies showed similarities with different groups of VLCFA synthesis inhibitors. Detailed analyses of VLCFA composition in tissues of duckweed (Lemna paucicostata) indicated a specific inhibition of the known herbicide target 3 ketoacyl-CoA synthase (KCS). Inhibitor studies using a yeast expression system established for plant KCS proteins verified the potency of mefluidide as an inhibitor of plant KCS enzymes. It could be shown that the strength of inhibition varied for different KCS homologues. The Arabidopsis Cer6 protein, which induces a plant growth phenotype similar to mefluidide when knocked out, was one of the most sensitive KCS enzymes (Tresch et al., 2012).rnThe findings of my own work were combined with other publications reporting a successful identification of the MoA and primary target proteins of different compounds or compound classes.rnA revised three-tier approach for the MoA identification of phytoactive compounds is proposed. The approach consists of a 1st level aiming to address compound stability, uniformity of effects in different species, general cytotoxicity and the effect on common processes like transcription and translation. Based on these findings advanced studies can be defined to start the 2nd level of MoA characterisation, either with further phenotypic characterisation, starting a genetic screen or establishing a biochemical screen. At the 3rd level, enzyme assays or protein affinity studies should show the activity of the compound on the hypothesized target and should associate the in vitro effects with the in vivo profile of the compound.
Resumo:
This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.
Resumo:
This doctoral thesis was focused on the investigation of enantiomeric and non-enantiomeric biogenic organic compound (BVOC) emissions from both leaf and canopy scales in different environments. In addition, the anthropogenic compounds benzene, toluene, ethylbenzene, and xylenes (BTEX) were studied. BVOCs are emitted into the lower troposphere in large quantities (ca. 1150 Tg C ·yr-1), approximately an order of magnitude greater than the anthropogenic VOCs. BVOCs are particularly important in tropospheric chemistry because of their impact on ozone production and secondary organic aerosol formation or growth. The BVOCs examined in this study were: isoprene, (-)/ (+)-α-pinene, (-)/ (+)-ß-pinene, Δ-3-carene, (-)/ (+)-limonene, myrcene, eucalyptol and camphor, as these were the most abundant BVOCs observed both in the leaf cuvette study and the ambient measurements. In the laboratory cuvette studies, the sensitivity of enantiomeric enrichment change from the leaf emission has been examined as a function of light (0-1600 PAR) and temperature (20-45°C). Three typical Mediterranean plant species (Quercus ilex L., Rosmarinus officinalis L., Pinus halepensis Mill.) with more than three individuals of each have been investigated using a dynamic enclosure cuvette. The terpenoid compound emission rates were found to be directly linked to either light and temperature (e.g. Quercus ilex L.) or mainly to temperature (e.g. Rosmarinus officinalis L., Pinus halepensis Mill.). However, the enantiomeric signature showed no clear trend in response to either the light or temperature; moreover a large variation of enantiomeric enrichment was found during the experiment. This enantiomeric signature was also used to distinguish chemotypes beyond the normal achiral chemical composition method. The results of nineteen Quercus ilex L. individuals, screened under standard conditions (30°C and 1000 PAR) showed four different chemotypes, whereas the traditional classification showed only two. An enclosure branch cuvette set-up was applied in the natural boreal forest environment from four chemotypes of Scots pine (Pinus sylvestris) and one chemotype of Norway spruce (Picea abies) and the direct emissions compared with ambient air measurements above the canopy during the HUMPPA-COPEC 2010 summer campaign. The chirality of a-pinene was dominated by (+)-enantiomers from Scots pine while for Norway spruce the chirality was found to be opposite (i.e. Abstract II (-)-enantiomer enriched) becoming increasingly enriched in the (-)-enantiomer with light. Field measurements over a Spanish stone pine forest were performed to examine the extent of seasonal changes in enantiomeric enrichment (DOMINO 2008). These showed clear differences in chirality of monoterpene emissions. In wintertime the monoterpene (-)-a-pinene was found to be in slight enantiomeric excess over (+)-a-pinene at night but by day the measured ratio was closer to one i.e. racemic. Samples taken the following summer in the same location showed much higher monoterpene mixing ratios and revealed a strong enantiomeric excess of (-)-a-pinene. This indicated a strong seasonal variance in the enantiomeric emission ratio which was not manifested in the day/night temperature cycles in wintertime. A clear diurnal cycle of enantiomeric enrichment in a-pinene was also found over a French oak forest and the boreal forest. However, while in the boreal forest (-)-a-pinene enrichment increased around the time of maximum light and temperature, the French forest showed the opposite tendency with (+)-a-pinene being favored. For the two field campaigns (DOMINO 2008 and HUMPPA-COPEC 2010), the BTEX were also investigated. For the DOMINO campaign, mixing ratios of the xylene isomers (meta- and para-) and ethylbenzene, which are all well resolved on the ß-cyclodextrin column, were exploited to estimate average OH radical exposures to VOCs from the Huelva industrial area. These were compared to empirical estimates of OH based on JNO2 measured at the site. The deficiencies of each estimation method are discussed. For HUMPPA-COPEC campaign, benzene and toluene mixing ratios can clearly define the air mass influenced by the biomass burning pollution plume from Russia.
Resumo:
Der light harvesting complex II (LHCII) ist ein pflanzliches Membranprotein, das in seiner trimeren Form über 40 Chlorophylle bindet. In der Pflanze kann er besonders effizient Licht sammeln und die Anregungsenergie anschließend fast verlustfrei über andere chlorophyll-bindende Proteine an die Reaktionszentren weiterleiten. Aufgrund dieser besonderen Eigenschaften war es ein Ziel dieser Arbeit, rekombinanten LHCII mit synthetischen Komponenten zu kombinieren, die zur Ladungstrennung befähigt sind. Zu diesem Zweck wurden unter anderem Halbleiternanokristalle (Quantum Dots, QDs) ausgewählt, die je nach Zusammensetzung sowohl als Energieakzeptoren als auch als Energiedonoren in Frage kamen. Durch Optimierung des Puffers gelang es, die Fluoreszenzquantenausbeute der QDs in wässriger Lösung zu erhöhen und zu stabilisieren, so dass die Grundvoraussetzungen für die spektroskopische Untersuchung verschiedener LHCII-QD-Hybridkomplexe erfüllt waren.rnUnter Verwendung bereits etablierter Affinitätssequenzen zur Bindung des LHCII an die QDs konnte gezeigt werden, dass die in dieser Arbeit verwendeten Typ-I QDs aus CdSe und ZnS sich kaum als Energie-Donoren für den LHCII eignen. Ein Hauptgrund lag im vergleichsweise kleinen Försterradius R0 von 4,1 nm. Im Gegensatz dazu wurde ein R0 von 6,4 nm für den LHCII als Donor und Typ-II QDs aus CdTe, CdSe und ZnS als Akzeptor errechnet, wodurch in diesem System eine höhere Effizienz des Energietransfers zu erwarten war. Fluoreszenzspektroskopische Untersuchungen von Hybridkomplexen aus LHCII und Typ-II QDs ergaben eine hohe Plausibilität für einen Fluoreszenz Resonanz Energietransfer (FRET) vom Lichtsammler auf die QDs. Weitere QD-Affinitätssequenzen für den LHCII wurden identifiziert und deren Bindekonstanten ermittelt. Versuche mit dem Elektronenakzeptor Methylviologen lieferten gute Hinweise auf eine LHCII-sensibilisierte Ladungstrennung der Typ-II QDs, auch wenn dies noch anhand alternativer Messmethoden wie z.B. durch transiente Absorptionsspektroskopie bestätigt werden muss. rnEin weiteres Ziel war die Verwendung von LHCII als Lichtsammler in dye-sensitized solar cells (DSSC). Geeignete dotierte TiO2-Platten wurden ermittelt, das Verfahren zur Belegung der Platten optimiert und daher mit wenig Aufwand eine hohe LHCII-Belegungsdichte erzielt. Erste Messungen von Aktionsspektren mit LHCII und einem zur Ladungstrennung fähigen Rylenfarbstoff zeigen eine, wenn auch geringe, LHCII sensibilisierte Ladungstrennung. rnDie Verwendung von Lanthanide-Binding-Tags (LBTs) ist ein potentielles Verfahren zur in vivo-Markierung von Proteinen mit Lanthanoiden wie Europium und Terbium. Diese Metalle besitzen eine überdurchschnittlich lange Lumineszenzlebensdauer, so dass sie leicht von anderen fluoreszierenden Molekülen unterschieden werden können. Im Rahmen der vorliegenden Arbeit gelang es, eine LBT in rekombinanten LHCII einzubauen und einen Lumineszenz Resonanz Energietransfer (LRET) vom Europium auf den LHCII nachzuweisen.rn
Resumo:
Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.
Resumo:
In dieser Arbeit wurde gezeigt, wie oberflächenfunktionalisierte Polystyrolnanopartikel zur Herstellung von Metallchalkogenid/Polymer-Hybridnanopartikeln eingesetzt werden können. Dazu wurden zunächst phosphonsäure- und phosphorsäurefunktionalisierte Surfmere synthetisiert, die anschließend bei der Miniemulsionspolymerisation von Styrol verwendet wurden. Die Surfmere dienten dabei zugleich zur Stabilisierung und als Comonomer. Die oberflächenfunktionalisierten Polystyrolnanopartikel wurden anschließend als Trägerpartikel für die Kristallisation von Metalloxiden eingesetzt. Dabei wurden Metalloxid/Polymer-Hybridnanopartikel mit einer „himbeerartigen“ Morphologie erhalten. Um die vielseitige Modifizierbarkeit der phosphonat- und phosphat¬funktionalisierten Polystyrolpartikel zu demonstrieren, wurden Cer-, Eisen- sowie Zinkoxid auf der Partikeloberfläche kristallisiert. Dazu wurden sowohl wässrige als auch alkoholische Metalloxid-Präkursorlösungen eingesetzt. Die synthetisierten Metall¬oxid/Polymer-Hybridpartikel wurden detailliert mit REM, TEM und PXRD analysiert. Die Untersuchung des Kristallisationsmechanismus hatte erwiesen, dass die komplexierten Metallkationen auf der Partikeloberfläche als Nukleationszentren wirkten und die Zutropfrate des Fällungsreagenz entscheidend für die Oberflächenkristallisation ist. Durch Mischungsexperimente von Metalloxidnanopartikeln und den oberflächen¬funktionalisierten Polymerpartikeln konnte die Hybridpartikelbildung über Hetero¬koagulation ausgeschlossen werden. Außerdem wurde festgestellt, dass die Polarität der funktionellen Gruppe über die Stärke der Komplexierung der Metalloxid-Präkursor bestimmt. Darüber hinaus wurde ein Modell zur Erklärung der kolloidalen Stabilisierung der Metalloxid/Polymer-Hybridsysteme aufgestellt und ein Zusammenhang zwischen dem gemessenen Zeta-Potential und der Oberflächenbedeckung der Polymerpartikel durch Metalloxid gefunden. Mit der Methode der Oberflächenkristallisation konnten frühe Stadien der Nukleation auf der Partikeloberfläche fixiert werden. Weiterhin wurden die individuellen physikalisch-chemischen Eigenschaften der hergestellten Metall¬oxid/Polymer-Hybridnano¬partikel untersucht. Dabei zeigten die CeO2/Polymer-Hybridpartikel eine hohe katalytische Aktivität bezüglich der photokatalytischen Oxidation von Rhodamin B, die als Modellreaktion durchgeführt wurde. Des Weiteren wurde die Magnetisierung der Magnetit/Polymer-Hybridpartikel gemessen. Die Fe3O4-Hybrid¬partikelsysteme wiesen eine vergleichbare Sättigungsmagnetisierung auf. Die Zinkoxid/Polymer-Hybridsysteme zeigten eine starke Lumineszenz im sichtbaren Bereich bei Anregung mit UV-Licht. Die Metalloxid/Polymer-Hybridpartikel, die mit den phosphonat- oder phosphatfunktion¬alisierten Polystyrolpartikeln hergestellt wurden, zeigten keine signifikanten Unterschiede in ihren physikochemischen Eigenschaften. Im Allgemeinen lässt sich schlussfolgern, dass sowohl Phosphonat- als auch Phosphatgruppen gleichermaßen für die Oberflächenkristallisation von Metalloxiden geeignet sind. Die Zink¬oxid/Polymer-Hybridsysteme stellen eine Ausnahme dar. Die Verwendung der phosphonat¬funktionalisierten Polystyrolpartikel führte zur Entstehung einer Zinkhydroxidphase, die neben der Zinkoxidphase gebildet wurde. Aufgrund dessen zeigten die ZnO/RPO3H2-Hybridpartikel eine geringere Lumineszenz im sichtbaren Bereich als die ZnO/RPO4H2-Hybridsysteme.rnDie Erkenntnisse, die bei der Oberflächenkristallisation von Metalloxiden gewonnen wurden, konnten erfolgreich auf Cadmiumsulfid übertragen werden. Dabei konnte Cadmiumsulfid auf der Oberfläche von phosphonatfunktionalisierten Polystyrolpartikeln kristallisiert werden. Mit Hilfe des RPO3H2-Surfmers konnten phosphonatfunktion¬alisierte Polystyrolpartikel mit superparamagnetischem Kern synthetisiert werden, die zur Herstellung von multifunktionalen CdS/Polymer-Hybridpartikeln mit Magnetitkern verwendet wurden. Die Kristallphase und die Oberflächenbedeckung der multi¬funktionalen Hybridsysteme wurden mit den CdS/Polymer-Hybridsystemen ohne magnetischen Kern verglichen. Dabei konnte nachgewiesen werden, dass in beiden Fällen Cadmiumsulfid in der Greenockit-Modifikation gebildet wurde. Die multifunktionalen CdS/Polymer-Hybridpartikel mit superparamagnetischem Kern konnten sowohl mit einem optischen als auch einem magnetischen Stimulus angeregt werden.rnrn
Resumo:
In der vorliegenden Arbeit wurde der Nachweis des Isotops Np-237 mit Resonanzionisations-Massenspektrometrie (RIMS) entwickelt und optimiert. Bei RIMS werden Probenatome mehrstufig-resonant mit Laserstrahlung angeregt, ionisiert und anschließend massenspektrometrisch nachgewiesen. Die Bestimmung geeigneter Energiezustände für die Anregung und Ionisation von Np-237 erfolgte durch Resonanzionisationsspektroskopie (RIS), wobei über 300 bisher unbekannte Energieniveaus und autoionisierende Zustände von Np-237 identifiziert wurden. Mit in-source-RIMS wird für das Isotop eine Nachweisgrenze von 9E+5 Atome erreicht. rnrnDie Mobilität von Np in der Umwelt hängt stark von seiner Elementspeziation ab. Für Sicherheitsanalysen potentieller Endlagerstandorte werden daher Methoden benötigt, die Aussagen über die unter verschiedenen Bedingungen vorliegenden Neptuniumspezies ermöglichen. Hierzu wurde eine online-Kopplung aus Kapillarelektrophorese (CE) und ICP-MS (inductively coupled plasma mass spectrometry) genutzt, mit der die Np-Redoxspezies Np(IV) und Np(V) noch bei einer Konzentrationen von 1E-9 mol/L selektiv nachgewiesen werden können. Das Verfahren wurde eingesetzt, um die Wechselwirkung des Elements mit Opalinuston unter verschiedenen Bedingungen zu untersuchen. Dabei konnte gezeigt werden, dass bei Gegenwart von Fe(II) Np(V) zu Np(IV) reduziert wird und dieses am Tongestein sorbiert. Dies führt insgesamt zu einer deutlich erhöhten Sorption des Np am Ton.
Resumo:
Das Chemokin CXCL12 (auch bekannt als SDF-1) ist ein kleines Protein (8-14) KDa, das in sechs Isoformen exprimiert wird (SDF-1α, SDF-1β, SDF-1γ, SDF- 1δ, SDF-1ε und SDF-1θ) von einem einzigen Gen, dass die Leukozyten-Wanderung regelt und variabel in einer Reihe von normalen und Krebsgeweben exprimiert wird.rnCXCL12 spielt verschiedene Rollen in der Tumorpathogenese. Es wurde nachgewiesen, dass CXCL12 das Tumorwachstum und die Malignität fördert, die Tumorangiogenese stärkt, sich an der Metastasierung beteiligt und zu immunsuppressiven Netzwerken innerhalb des Tumormikromilieus beiträgt. Daher liegt es nahe, dass der CXCL12/CXCR4-Signalweg ein wichtiges Ziel ist für die Entwicklung von neuartigen Krebstherapien.rnUm Licht auf die Rolle der Chemokin CXCL12 Splicevarianten in der Entwicklung von Krebs zu werfen und die mögliche physiologische Relevanz und ihre möglichen funktionellen Unterschiede bei Darmkrebs zu verstehen, haben wir alle CXCL12 Splicevarianten (alpha, beta, gamma, delta, epsilon und theta) in die kolorektalen Zelllinie SW480 und die Melanomzellinie D05 transfiziert und exprimiert.rnrnDiese Arbeit wurde erstellt, um die folgenden Ziele zu erreichen. Untersuchung der Rolle von CXCL12 Splicevarianten bei der Vermittlung von Tumorprogression, Adhäsion, Migration, Invasion und Metastasierung von Darmkrebs. Untersuchung, ob die CXCL12 Variantenwege ein wichtiges Ziel für die Entwicklung von Krebstherapien darstellen.rn• Um eine in vivo Mausmodell zu entwickeln, um die Rolle der CXCL12 Varianten im Rahmen des Tumorwachstums zu verstehen.rnrnUnsere Ergebnisse zeigen, dass:Der CXCL12 G801A Polymorphismus ist ein Low-Penetranz Risikofaktor für die Entwicklung von Darmkrebs. Der CXCL12-Gen-Polymorphismus rs1801157 ist mit dem T-Status (Tumor-node-Metastasen) assoziiert. Es gab keine Beziehung zwischen CXCL12-Gen-Polymorphismus rs1801157 und Fernmetastisen oder LN metastasen. Alle sechs CXCL12 Splicevarianten werden im Darmkrebs und in gesunder Kolon mucosa exprimiert. Die höchste Expression wird bei SDF-1alpha, dann SDF-1 beta gefunden. Alle sechs CXCL12 Varianten zeigen erhöhte Tumorzellproliferation in vitro. SDF-1beta, gefolgt von SDF-1alpha zeigte die größte Aktivität im Proliferationsassay.rn• Alle sechs CXCL12 Varianten induzieren die Tumorzelladhäsion.SDF-1beta dann SDF-1alpha zeigte die größte Aktivität im Rahmen des Adhäsionsassay. Alle sechs CXCL12 Varianten erhöhten die Zellmigration und Invasion von Tumorzellen in vitro. SDF-1theta und SDF-1epsilon 1theta zeigten die größte Aktivität, während die schwächste Aktivität mit SDF-1alpha und SDF-1beta beobachtet wurde. Alle sechs CXCL12 Varianten aktivieren Akt und (MAPK) Mitogen- acktivatedierte Protein kinase Wege und damit die Regulierung viele essentieller Prozesse in Tumorzellen, wie Proliferation, Migration, Invasion und Adhäsion. Es ist interessant festzustellen, dass AMD3100 die CXCL12 Splicevarianten inhibriert, die AKT-MEK-1/2-Phosphorylierung induzieren.rnDer Inhibitor AMD3100 unterdrückt stark die CXCL12 Varianten -delta, -epsilon und theta-und unterdrückt schwach CXCL12-gamma. während es keine signifikante Wirkung auf CXCL12-alpha und beta hatte. Es hat möglicherweise Auswirkungen auf mehrere große Signalwage in Bezug auf Proliferation, Migration und Invasions.rn• Es ist wichtig anzumerken, dass die Hemmung von CXCL12-Varianten durch AMD3100 einen der möglichen Ansaätze in der Krebstherapie darstellen kann.Wir schlagen vor, dass weitere Studien erwogen werden, die wir brauchen, um die biologische Aktivität dieser neuen CXCL12 Varianten bei verschiedenen Arten von Krebs klar zu verstehen.
Resumo:
Nichtklassische Kristallisationen tragen heutzutage einen entscheidenden Anteil zum Verständnis von Biomineralisationsprozessen und anspruchsvoller Morphogenese in vitro bei. Die vorliegende Dissertation stellt drei neue Vertreter nichtklassischer Kristallisationen vor, die während der Fällung von Calciumcarbonat und verwandten zweiwertigen Carbonaten auftreten.rn(a) Zum ersten Male wird eine Symmetrie-brechende Phasenselektion von Calciumcarbonat beschrieben, die auf einem subtilen Wechselspiel von verketteten Gleichgewichten basiert und deren Ursache letztendlich der paritätsverletzenden Energiedifferenz (PVED) zugeschrieben wird. rn(b) Die interkristalline Minoritätskomponente eines Mesokristalles, seien es z.B. eingeschlossenes Proteine oder polymere Additive, erfahren eine Morphogenese im Sinne einer Formpressung. Dieser bislang wenig beachtete Effekt in Mesokristallen wurde zur Herstellung von Nanoröhren eingesetzt, die aus verschiedensten Materialien bestehen können (z.B. Calciumcarbonat oder Cadmiumsulfid).rn(c) Das Hauptaugenmerk dieser Dissertation liegt auf dem Auftreten eines flüssig-amorphen Intermediates während der Metallcarbonat-Präzipitation. Durch diffusionskontrollierte und kontaktfreie Versuchsführung konnte die Existenz eines solchen nichtklassischen, flüssigen Intermediates, welches der kristallinen Phase bei neutralen pH vorangeht, sicher nachgewiesen werden. rn
Resumo:
Supramolekulare Komplexe werden durch nichtkovalente Bindungen stabilisiert. Legt man eine externe Kraft an einen solchen Komplex an, ist es möglich, diese Bindungen zu öffnen. Anhand der dafür benötigten Kraft läßt sich die Stabilität des Komplexes bestimmen. Im Rahmen dieser Arbeit wurden zwei supramolekulare Komplexe, die unterschiedliche Arten von nichtkovalenten Bindungen enthalten, mit Hilfe von Molekulardynamik (MD) Simulationen untersucht. In beiden Fällen wurden die relevanten Bindungsstrukturen und deren Stabilität ermittelt.rnZum einen wurden zwei synthetische Calix[4]aren-Catenan-Dimersysteme betrachtet, in denen die beiden Monomere über Wasserstoffbrückenbindungen aneinander gebunden sind. Die Besonderheit dieser Komplexe ist, dass die Monomere aufgrund von verschlauften Alkylketten (Catenan-Struktur) nicht vollständig voneinander getrennt werden können. In Abhängigkeit der Länge derrnAlkylketten findet man für die beiden Komplexe eine unterschiedliche Zahl von relevanten Bindungsstrukturen (Zustände). Für ein System mit relativ kurzen Alkylketten findet man zwei Zustände, eine kompakte Struktur, die auch im Gleichgewicht beobachtet wird und eine gestreckte Struktur, die nur unter dem Einfluss der externen Kraft stabil ist. Verlängert man die Alkylketten,rnbeobachtet man einen weiteren Zustand, in dem das Dimer vollständig gestreckt ist und die Monomere eine größere Separation aufweisen.rnBei dem zweiten System, das untersucht wurde, handelte es sich um einen Carbohydrat-Kation-Carbohydrat Komplex, der für die Selbstadhäsion von Meeresschwämmen eine wichtige Rolle spielt. Experimentell ist bekannt, dass sich dieser Komplex zwar mit Calciumionen, nicht aber mit Magnesiumionen bildet. Im Rahmen dieser Arbeit wurde gezeigt, dass die wesentlichen Unterschiede der beiden Kationarten in Bezug auf die Komplexbildung auf den kleineren Ionenradius des Magnesiumions zurückzuführen sind. Aufgrund des kleineren Radius bindet ein solvatisiertes Magnesiumion die Hydrathülle stärker und die Komplexbindung wird kinetisch gehemmt. Zum anderen bindet im Magnesiumkomplex nur eines der beiden Carbohydrate direkt an das Kation.rnDas andere Carbohydrat bindet nur indirekt über ein Wassermolekül an das Kation. Da diese indirekte Bindung gegenüber einer direkten Bindung schwächer ist, weist der Magensiumkomplex eine geringere Stabilität auf als ein vergleichbarer Calciumkomplex.rnDes Weiteren wurde untersucht, inwieweit die Ergebnisse von MD Simulationen vom verwendeten Modell (Kraftfeld) abhängen. Allgemein ist bekannt, dass die Ergebnisse von Gleichgewichtssimulationen kraftfeldabhängig sind. Im Rahmen diese Arbeit konnte gezeigt werden, dass sich für Zugsimulationen, in denen eine externe Kraft an das System angelegt wird, eine ähnliche Kraftfeldabhängigkeit ergibt. Da sich die Unterschiede der Ergebnisse auf Unterschiede in den Gleichgewichtssimulationen zurückführen lassen, kann man annehmen, dass die externe Kraft keine zusätzliche Einschränkung in Bezug auf die Zuverlässigkeit der Kraftfelder darstellt.rnAbgesehen von den MD Simulationen wurde eine in der Literatur beschriebene Methode zur Analyse von Zweizustandssystemen unter dem Einfluss einer konstanten externen Kraft erweitert. Ein Komplex läßt sich als Zweizustandssystem beschreiben, wenn dieser zwei relevante Bindungsstrukturen aufweist. Wird an solch einen Komplex eine konstante Kraft angelegt, lassen sich Übergänge zwischen den beiden Zuständen beobachten. Ist das System weit entfernt vom Gleichgewicht, kann es problematisch sein, einen der beiden Übergänge vollständig aufzulösen. In diesen Fällen wird nun vorgeschlagen, die beiden Übergänge zu einem sogenannten Kreisübergang zusammen zu fassen und diese zu zählen. Bestimmt man die Zahl der Übergänge pro Zeit in Abhängigkeit der angelegten Kraft, können die Übergangsraten bestimmt werden. Um die Methode zu validieren wurden kinetische Monte-Carlo Simulationen durchgeführt. Es zeigt sich, dass schon mit relativ kleinen Datensätzen gute Ergebnisse erzielt werden können.