867 resultados para Artificial neural net


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A lactação é um processo fisiológico complexo que ainda não foi compreendido na sua totalidade. Inúmeros fatores intervêm na síntese e secreção do leite, sendo os mais importantes a nutrição e o metabolismo endógeno dos nutrientes. A qualidade do leite é valorizada tanto pela sua composição química, como pelo conteúdo de células somáticas. No entanto, visando a comercialização do leite, as maiores mudanças e melhoras na qualidade podem ser atingidas através da manipulação da dieta dos animais, em especial em vacas leiteiras de alta produção. Avaliar os processos de absorção de alimentos, bem como o metabolismo catabólico e anabólico direcionado para a síntese do leite, têm sido uma grande preocupação na pesquisa de nutrição e bioquímica da produção animal. O principal objetivo da presente pesquisa foi gerar modelos matemáticos que pudessem explicar a participação de diferentes metabólitos sobre a composição química do leite. Neste intuito foram coletadas amostras de fluído ruminal, sangue, urina e leite de 140 vacas da raça Holandesa nas primeiras semanas de lactação e mantidas sob sistema semi-intensivo de produção e dieta controlada. Os animais foram selecionados de sistemas de produção no ecossistema do Planalto Médio de Rio Grande do Sul e foram amostrados em dois períodos climáticos críticos. No fluido ruminal foram avaliados o pH e o tempo de redução do azul de metileno. No sangue foram determinados os metabólitos: glicose, colesterol, β-hidroxibutirato (BHB), triglicerídeos, fructosamina, ácidos graxos não esterificados (NEFA), proteínas totais, albumina, globulina, uréia, creatinina, cálcio, fósforo e magnésio. As enzimas: aspartato amino transferase (AST), gama glutamil transferase (GGT) e creatina kinase (CK). Os hormônios: cortisol, insulina, triiodotironina (T3), tiroxina (T4), e leptina. Foi efetuado hemograma, para conhecer: hematócrito, hemoglobina, e contagem total e diferencial de células brancas. Na urina foram dosados: corpos cetônicos, pH e densidade. No leite foi determinada: proteína, gordura, lactose, sólidos totais, sólidos não gordurosos, contagem de células somáticas e uréia. Para a determinação de cada um dos metabólitos ou compostos foram usadas técnicas específicas validadas internacionalmente. Os diferentes valores obtidos constituíram os parâmetros básicos de entrada para a construção dos diversos modelos matemáticos executados para predizer a composição do leite. Mediante procedimentos de regressão linear múltipla algoritmo Stepwise, procedimentos de correlação linear simples de Pearson e procedimentos de análise computacional através de redes neurais, foram gerados diferentes modelos para identificar os parâmetros endógenos de maior relevância na predição dos diferentes componentes do leite. A parametrização das principais rotas bioquímicas, do controle endócrino, do estado de funcionamento hepático, da dinâmica ruminal e da excreção de corpos cetônicos aportou informação suficiente para predizer com diferente grau de precisão o conteúdo dos diferentes sólidos no leite. O presente trabalho é apresentado na forma de quatro artigos correspondentes aos parâmetros energéticos, de controle endócrino, modelagem matemática linear múltipla e predição através de Artificial Neural Networks (ANN).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Em economias com regimes de metas de inflação é comum que Bancos Centrais intervenham para reduzir os níveis de volatilidade do dólar, sendo estas intervenções mais comuns em países não desenvolvidos. No caso do Brasil, estas intervenções acontecem diretamente no mercado à vista, via mercado de derivativos (através de swaps cambiais) ou ainda com operações a termo, linhas de liquidez e via empréstimos. Neste trabalho mantemos o foco nas intervenções no mercado à vista e de derivativos pois estas representam o maior volume financeiro relacionado à este tipo de atuação oficial. Existem diversos trabalhos que avaliam o impacto das intervenções e seus graus de sucesso ou fracasso mas relativamente poucos que abordam o que levaria o Banco Central do Brasil (BCB) a intervir no mercado. Tentamos preencher esta lacuna avaliando as variáveis que podem se relacionar às intervenções do BCB no mercado de câmbio e adicionalmente verificando se essas variáveis se relacionam diferentemente com as intervenções de venda e compra de dólares. Para tal, além de utilizarmos regressões logísticas, como na maioria dos trabalhos sobre o tema, empregamos também a técnica de redes neurais, até onde sabemos inédita para o assunto. O período de estudo vai de 2005 a 2012, onde o BCB interveio no mercado de câmbio sob demanda e não de forma continuada por longos períodos de tempo, como nos anos mais recentes. Os resultados indicam que algumas variáveis são mais relevantes para o processo de intervenção vendendo ou comprando dólares, com destaque para a volatilidade implícita do câmbio nas intervenções que envolvem venda de dólares, resultado este alinhado com outros trabalhos sobre o tema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo

Relevância:

90.00% 90.00%

Publicador:

Resumo:

On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes the specification of a new function block according to Foundation Fieldbus standards. The new block implements an artificial neural network, which may be useful in process control applications. The specification includes the definition of a main algorithm, that implements a neural network, as well as the description of some accessory functions, which provide safety characteristics to the block operation. Besides, it also describes the block attributes emphasizing its parameters, which constitute the block interfaces. Some experimental results, obtained from an artificial neural network implementation using actual standard functional blocks on a laboratorial FF network, are also shown, in order to demonstrate the possibility and also the convenience of integrating a neural network to Fieldbus devices

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As análises de agrupamento e de componentes principais e as redes neurais artificiais foram utilizadas na determinação de padrões de comportamento das populações de macrófitas aquáticas que colonizaram o reservatório de Santana, Piraí-RJ, durante o ano de 2004. As análises de agrupamento dividiram o comportamento das populações durante o ano em dois grupos distintos, apresentando um padrão no primeiro semestre que difere daquele observado no segundo semestre do ano. A análise de componentes principais demonstrou que esse comportamento da comunidade (grupo de populações) é influenciado principalmente pelas espécies S. montevidensis, Heteranthera reniformis, Ludwigia sp., Rhynchospora aurea, C. iria, C. ferax e Aeschynomene denticulata no primeiro grupo e por Echinochloa polystachya, Polygonum lapathifolium, Alternanthera phyloxeroides, Pistia stratiotes, Eichhornia azurea, Brachiaria arrecta e Oxyscarium cubense no segundo grupo. As redes neurais artificiais agruparam as populações de macrófitas aquáticas em nove grupos, conforme sua densidade nos diferentes meses do ano. A aplicação da análise de componentes principais (ACP) nos valores de frequência das populações presentes nos primeiros três grupos de Kohonen permitiu discriminar três grupos de meses, cujas populações apresentaram características diferentes de colonização. A aplicação das redes neurais artificiais permitiu melhor discriminação dos meses e das espécies que compõem as comunidades correspondentes, quando utilizada a análise de componentes principais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, optic fiber is one of the most used communication methods, mainly due to the fact that the data transmission rates of those systems exceed all of the other means of digital communication. Despite the great advantage, there are problems that prevent full utilization of the optical channel: by increasing the transmission speed and the distances involved, the data is subjected to non-linear inter symbolic interference caused by the dispersion phenomena in the fiber. Adaptive equalizers can be used to solve this problem, they compensate non-ideal responses of the channel in order to restore the signal that was transmitted. This work proposes an equalizer based on artificial neural networks and evaluates its performance in optical communication systems. The proposal is validated through a simulated optic channel and the comparison with other adaptive equalization techniques

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)