EFFICIENT FAULT LOCATION IN UNDERGROUND DISTRIBUTION SYSTEMS THROUGH OPTIMUM-PATH FOREST


Autoria(s): Souza, Andre N.; da Costa, Pedro; da Silva, Paulo S.; Ramos, Caio C. O.; Papa, Joao P.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2012

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 10/12398-0

Processo FAPESP: 09/16206-1

In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.

Formato

503-515

Identificador

http://dx.doi.org/10.1080/08839514.2012.674289

Applied Artificial Intelligence. Philadelphia: Taylor & Francis Inc, v. 26, n. 5, p. 503-515, 2012.

0883-9514

http://hdl.handle.net/11449/8274

10.1080/08839514.2012.674289

WOS:000303887700004

Idioma(s)

eng

Publicador

Taylor & Francis Inc

Relação

Applied Artificial Intelligence

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article