893 resultados para AL-2004-1
Resumo:
The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.
Resumo:
The AND-2A drillcore (Antarctic Drilling Program-ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (Southern McMurdo Sound, Ross Sea) with the aim of tracking ice proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar-39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar-39Ar ages, indicating that the AND-2A drillcore recovered <230 m of Middle Miocene (~128-358 m below sea floor, ~11.5-16.0 Ma) and >780 m of Early Miocene (~358-1093 m below sea floor, ~16.0-20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 m below sea floor down hole, characterized by a mean sedimentation rate of ~19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ~17.5-18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 m below sea floor down hole, with the 'proto-Mount Morning' as the main source.
Resumo:
Analysis of sediments deposited at different latitudes around the world during the Palaeocene-Eocene Thermal Maximum (PETM; ~56 Ma) have revealed a globally profound warming phase, regionally varying from 5-8 °C. Such records from Europe have not yet been obtained. We studied the variations in sea surface and continental mean annual air temperatures (SST and MAT, respectively) and the distribution patterns and stable carbon isotopes of higher plant derived n-alkanes in two proximal PETM sections (Fur and Store Bælt, Denmark) from the epicontinental North Sea Basin. A negative carbon isotope excursion (CIE) of 4-7 per mil was recorded in land plant derived n-alkanes, similar to what has been observed for other PETM sections. However, differences observed between the two proximal sites suggest that local factors, such as regional vegetation and precipitation patterns, also influenced the CIE. The presence of S-bound isorenieratene derivatives at the onset of the PETM and increased organic carbon contents points to a rapid shift in depositional environment; from well oxygenated to anoxic and sulfidic. These euxinic conditions are comparable with those during the PETM in the Arctic Ocean. SSTs inferred from TEX86 show relatively low temperatures followed by an increase of ~7 °C across the PETM. At the Fur section, a remarkably similar temperature record was obtained for MAT using the MBT'/CBT proxy. However, the MAT record of the Store Bælt section did not reveal this warming.
Resumo:
The tuna stomach database from AZTI-Tecnalia corresponds to 7 years of sampling from 2004 to 2011. Due to the absence of continuity in the different projects dealing with the feeding ecology of tunas, the sampling could not be performed every year for both species, and no sample was collected in 2008. However, the fish stomach content record contents composition - by prey weight - of 1525 albacore caught in the Bay of Biscay and surrounding waters of the North Atlantic Drift Region in 2005 (n=397), 2006 (n=196), 2007 (n=37), 2009 (n=95), 2010 (n=566) and 2011 (n=234) ; and of 686 bluefin tunas caught in the Southeastern Bay of Biscay in 2004 (n=32), 2005 (n=36), 2006 (n=3), 2009 (n=257), 2010 (n=233) and 2011 (n=125). Samples have been obtained from scientific research surveys (using a variety of different fishing gears), from commercial fisheries catches, from individual fish voluntarily sampled by recreational fishermen and from fish accidentally stranded on coastlines. Each predator is identified by an ID and its length and wet weight are given. In case the wet weight could not be measured, it was estimated through a length-weight relationship equation and is indicated in the comment for the Predator mass column. The total weight of each prey is given, as well as the weight of each prey taxonomic group in each stomach.
Resumo:
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) highlight the impact of recent atmospheric (Steig et al., 2009, doi:10.1038/nature07669) and oceanic warming (Gille, 2002, doi:10.1126/science.1065863) on the cryosphere. Observations (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) and models (Pollard and DeConto, 2009, doi:10.1038/nature07809) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).
Resumo:
Sites 1146 and 1148 of Ocean Drilling Program Leg 184, in the South China Sea (SCS), comprise long sediment sections with a time span from the early Oligocene to the Pleistocene. Calcareous nannofossils from these two sites were biostratigraphically studied. We recognized 53 early Oligocene to Pleistocene events that are commonly found in open sea areas and can therefore be correlated within a large geographic range. This study also revealed that a few conventionally used nannofossil events are not suitable for the SCS, and further evaluation is needed. The lower Oligocene to Pleistocene sequences recovered at Sites 1146 and 1148 were subdivided into the 4 Paleogene zones and 21 Neogene to Quaternary zones of Martini, in correlation with the Paleogene to Quaternary zones of Okada and Bukry. This provided a lower Oligocene through Pleistocene nannofossil biostratigraphic framework. A significant unconformity was recognized in the Oligocene-Miocene transition, in which the upper part of Oligocene Zone NP25 and lower part of Miocene Zone NN1 were missing. The time span of the unconformity was estimated to be ~1 m.y. Very high sedimentation rates were seen in the Oligocene, relative low values were seen in the Miocene, and the highest values were seen in the Pleistocene, which was believed to be the result of tectonic and sedimentation history of the SCS.
Resumo:
The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.