994 resultados para vibrational structure
Resumo:
Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Resumo:
The mineral crandallite CaAl3(PO4)2(OH)5•(H2O) has been identified in deposits found in the Jenolan Caves, New South Wales, Australia by using a combination of X-ray diffraction and Raman spectroscopic techniques. A comparison is made between the vibrational spectra of crandallite found in the Jenolan Caves and a standard crandallite. Raman and infrared bands are assigned to PO43- and HPO42- stretching and bending modes. The predominant features are the internal vibrations of the PO43 and HPO42- groups. A mechanism for the formation of crandallite is presented and the conditions for the formation are elucidated.
Resumo:
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Cu2+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in a different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.
Resumo:
The Giant Long-Armed Prawn, Macrobrachium lar is a freshwater species native to the Indo-Pacific. M. lar has a long-lived, passive, pelagic marine larval stage where larvae need to colonise freshwater within three months to complete their development. Dispersal is likely to be influenced by the extensive distances larvae must transit between small oceanic islands to find suitable freshwater habitat, and by prevailing east to west wind and ocean currents in the southern Pacific Ocean. Thus, both intrinsic and extrinsic factors are likely to influence wild population structure in this species. The present study sought to define the contemporary broad and fine-scale population genetic structure of Macrobrachium lar in the south-western Pacific Ocean. Three polymorphic microsatellite loci were used to assess patterns of genetic variation within and among 19 wild adult sample sites. Statistical procedures that partition variation implied that at both spatial scales, essentially all variation was present within sample sites and differentiation among sites was low. Any differentiation observed also was not correlated with geographical distance. Statistical approaches that measure genetic distance, at the broad-scale, showed that all south-western Pacific Islands were essentially homogeneous, with the exception of a well supported divergent Cook Islands group. These findings are likely the result of some combination of factors that may include the potential for allelic homoplasy, through to the effects of sampling regime. Based on the findings, there is most likely a divergent M. lar Cook Islands clade in the south-western Pacific Ocean, resulting from prevailing ocean currents. Confirmation of this pattern will require a more detailed analysis of nDNA variation using a larger number of loci and, where possible, use of larger population sizes.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
Some minerals are formed which show poorly defined X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of the oxyanions in such minerals. Among this group of minerals is mallestigite with formula Pb3Sb5+(SO4)(AsO4)(OH)6•3H2O. The objective of this research is to determine the molecular structure of the mineral mallestigite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. Mallestigite is a mineral formed in ancient waste dumps such as occurs at Mallestiger, Carinthia, Austria and as such is a mineral of archaeological significance.
Resumo:
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH4)Al3(PO4)3(OH)•9(H2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.
Resumo:
In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH4)Na(PO4)•4H2O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm-1 (Cave) and 922 cm-1 (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm-1. Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO43-, H2O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.
Resumo:
Boundaries are an important field of study because they mediate almost every aspect of organizational life. They are becoming increasingly more important as organizations change more frequently and yet, despite the endemic use of the boundary metaphor in common organizational parlance, they are poorly understood. Organizational boundaries are under-theorized and researchers in related fields often simply assume their existence, without defining them. The literature on organizational boundaries is fragmented with no unifying theoretical basis. As a result, when it is recognized that an organizational boundary is "dysfunctional". there is little recourse to models on which to base remediating action. This research sets out to develop just such a theoretical model and is guided by the general question: "What is the nature of organizational boundaries?" It is argued that organizational boundaries can be conceptualised through elements of both social structure and of social process. Elements of structure include objects, coupling, properties and identity. Social processes include objectification, identification, interaction and emergence. All of these elements are integrated by a core category, or basic social process, called boundary weaving. An organizational boundary is a complex system of objects and emergent properties that are woven together by people as they interact together, objectifying the world around them, identifying with these objects and creating couplings of varying strength and polarity as well as their own fragmented identity. Organizational boundaries are characterised by the multiplicity of interconnections, a particular domain of objects, varying levels of embodiment and patterns of interaction. The theory developed in this research emerged from an exploratory, qualitative research design employing grounded theory methodology. The field data was collected from the training headquarters of the New Zealand Army using semi-structured interviews and follow up observations. The unit of analysis is an organizational boundary. Only one research context was used because of the richness and multiplicity of organizational boundaries that were present. The model arose, grounded in the data collected, through a process of theoretical memoing and constant comparative analysis. Academic literature was used as a source of data to aid theory development and the saturation of some central categories. The final theory is classified as middle range, being substantive rather than formal, and is generalizable across medium to large organizations in low-context societies. The main limitation of the research arose from the breadth of the research with multiple lines of inquiry spanning several academic disciplines, with some relevant areas such as the role of identity and complexity being addressed at a necessarily high level. The organizational boundary theory developed by this research replaces the typology approaches, typical of previous theory on organizational boundaries and reconceptualises the nature of groups in organizations as well as the role of "boundary spanners". It also has implications for any theory that relies on the concept of boundaries, such as general systems theory. The main contribution of this research is the development of a holistic model of organizational boundaries including an explanation of the multiplicity of boundaries . no organization has a single definable boundary. A significant aspect of this contribution is the integration of aspects of complexity theory and identity theory to explain the emergence of higher-order properties of organizational boundaries and of organizational identity. The core category of "boundary weaving". is a powerful new metaphor that significantly reconceptualises the way organizational boundaries may be understood in organizations. It invokes secondary metaphors such as the weaving of an organization's "boundary fabric". and provides managers with other metaphorical perspectives, such as the management of boundary friction, boundary tension, boundary permeability and boundary stability. Opportunities for future research reside in formalising and testing the theory as well as developing analytical tools that would enable managers in organizations to apply the theory in practice.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.