879 resultados para swarm intelligence
Resumo:
Successful management is dependent heavily on the manager’s ability to handle conflict effectively. The workforce has been increasingly becoming diversified vis-à-vis the gender, culture and ethnicity. The present work environment has in itself contributed to sowing seeds of conflict with greater diversity, hostility, complexity and newer business competencies in the work context.The classic study of Mintzberg’s Managerial roles approach (1973) also says that a manager has to spend sufficient time and energy in solving conflict as he has to take roles as a negotiator, and dispute handler. An understanding of the conflict and role that it plays in influencing employee behavior constructively or destructively is immense. Therefore conflict when left unmanaged can lead to diminished cohesiveness amongst employees, productivity and reduced organizational fitness. To manage conflict effective conflict resolution strategies that have constructive outcomes is called for. Conflict resolution style theorists opine that collaborative or integrative style, where there is high concern for task and people is considered to give positive individual and organizational outcomes, while the withdrawing /avoidance style and forcing / dominating style are considered to be ineffective in managing conflict. Though managers have typical preferences in the styles followed it need not necessarily be the typical response as it depends on the context, power relationships, emotions etc. The adoption of conflict styles of managers however is dependent on variables like gender orientation, cultural values, personality orientation, underlying relationships – public/private. The paper attempts to draw the importance of managing conflicts at workplace positively and the need for effective conflict resolution strategies. The conflict style adopted and the variables that affect the adoption of each style are discussed and possible interventions at the workplace are suggested
Resumo:
Das Management von Kundenbeziehungen hat sich in der klassischen Ökonomie unter dem Begriff »Customer Relationship Management« (kurz: CRM) etabliert und sich in den letzten Jahren als erfolgreicher Ansatz erwiesen. In der grundlegenden Zielsetzung, wertvolle, d.h. profitable und kreditwürdige Kunden an ein Unternehmen zu binden, kommen Business-Intelligence Technologien zur Generierung von Kundenwissen aus kundenbezogenen Daten zum Einsatz. Als technologische Plattform der Kommunikation und Interaktion gewähren Business Communities einen direkten Einblick in die Gedanken und Präferenzen der Kunden. Von Business-Communitybasiertem Wissen der Kunden und über Kunden können individuelle Kundenbedürfnisse, Verhaltensweisen und damit auch wertvolle (potenzielle, profilgleiche) Kunden abgeleitet werden, was eine differenziertere und selektivere Behandlung der Kunden möglich macht. Business Communities bieten ein umfassendes Datenpotenzial, welches jedoch bis dato für das CRM im Firmenkundengeschäft respektive die Profilbildung noch nicht genutzt wird. Synergiepotenziale von der Datenquelle "Business Community" und der Technologie "Business Intelligence" werden bislang vernachlässigt. An dieser Stelle setzt die Arbeit an. Das Ziel ist die sinnvolle Zusammenführung beider Ansätze zu einem erweiterten Ansatz für das Management der irmenkundenbeziehung. Dazu wird ein BIgestütztes CRM-Konzept für die Generierung, Analyse und Optimierung von Kundenwissen erarbeitet, welches speziell durch den Einsatz einer B2B-Community gewonnen und für eine Profilbildung genutzt wird. Es soll durch die Anbindung von Fremddatenbanken Optimierung finden: In den Prozess der Wissensgenerierung fließen zur Datenqualifizierung und -quantifizierung externe (Kunden-) Daten ein, die von Fremddatenbanken (wie z.B. Information Provider, Wirtschaftsauskunftsdienste) bereitgestellt werden. Der Kern dieser Zielsetzung liegt in der umfassenden Generierung und stetigen Optimierung von Wissen, das den Aufbau einer langfristigen, individuellen und wertvollen Kundenbeziehung unterstützen soll.
Resumo:
All intelligence relies on search --- for example, the search for an intelligent agent's next action. Search is only likely to succeed in resource-bounded agents if they have already been biased towards finding the right answer. In artificial agents, the primary source of bias is engineering. This dissertation describes an approach, Behavior-Oriented Design (BOD) for engineering complex agents. A complex agent is one that must arbitrate between potentially conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based and hybrid architectures for agents, and the object oriented approach to software engineering. The primary contributions of this dissertation are: 1.The BOD architecture: a modular architecture with each module providing specialized representations to facilitate learning. This includes one pre-specified module and representation for action selection or behavior arbitration. The specialized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. 2.The BOD development process: an iterative process that alternately scales the agent's capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the component representations. This ongoing process for controlling complexity not only provides bias for the behaving agent, but also facilitates its maintenance and extendibility. The secondary contributions of this dissertation include two implementations of POSH action selection, a procedure for identifying useful idioms in agent architectures and using them to distribute knowledge across agent paradigms, several examples of applying BOD idioms to established architectures, an analysis and comparison of the attributes and design trends of a large number of agent architectures, a comparison of biological (particularly mammalian) intelligence to artificial agent architectures, a novel model of primate transitive inference, and many other examples of BOD agents and BOD development.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
We have simulated the behavior of several artificial flies, interacting visually with each other. Each fly is described by a simple tracking system (Poggio and Reichardt, 1973; Land and Collett, 1974) which summarizes behavioral experiments in which individual flies fixate a target. Our main finding is that the interaction of theses implemodules gives rise to a variety of relatively complex behaviors. In particular, we observe a swarm-like behavior of a group of many artificial flies for certain reasonable ranges of our tracking system parameters.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.
Resumo:
El projecte tracte d' implementar una solució de Business Intelligence sota la plataforma Microsoft.Aquest projecte va destinat al Departament de Comptabilitat de l' Ajuntament de Cambrils, i està relacionat amb la funció del control de les despeses i els ingressos
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Engineering of negotiation model allows to develop effective heuristic for business intelligence. Digital ecosystems demand open negotiation models. To define in advance effective heuristics is not compliant with the requirement of openness. The new challenge is to develop business intelligence in advance exploiting an adaptive approach. The idea is to learn business strategy once new negotiation model rise in the e-market arena. In this paper we present how recommendation technology may be deployed in an open negotiation environment where the interaction protocol models are not known in advance. The solution we propose is delivered as part of the ONE Platform, open source software that implements a fully distributed open environment for business negotiation
Resumo:
Pearon's resource from the Brookshear Chapter
Resumo:
In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.
Resumo:
Adaptar los tests de inteligencia WISC para poder evaluar as?? al individuo con respecto al grupo seg??n las habilidades valoradas en cada cultura. Reajustar el WISC a la cultura catalana; hasta ahora los tests eran castellanos y hace falta adaptarlos al entorno para que sean realmente efectivos. 413 ni??os de 16 escuelas escogidas al azar. Edad entre 6 y 12 a??os. An??lisis exhaustivo de la prueba de Wechsler y de la adaptaci??n TEA, revisi??n cr??tica y adaptaci??n catalana. Prueba piloto para cotejar la eficiencia. Correcci??n de la WISC creada a partir de las divergencias estad??sticas entre el standard y los resultados de la prueba piloto. Encuestas, Test de WISC original y adaptado, muestreo. Tablas, an??lisis estad??sticos de correlaci??n, an??lisis factorial, fiabilidad y baremos de tipificaci??n. Se ha conseguido obtener un test WISC mucho m??s adaptado a la realidad de Catalunya gracias a la eliminaci??n de errores y dificultades que generaban las versiones Wechsler y TEA anteriores.