945 resultados para oil-water emulsion
Resumo:
A phase diagram of the pseudo-ternary Aerosol OT (AOT) + n-butanol/n-heptane/water system, at a mass ratio of AOT/n-butanol = 2, is presented. Conductivity measurements showed that within the vast one-phase microemulsion region observed, the structural transition from water-in-oil to oil-in-water microemulsion occurs continuously without phase separation. This pseudo-ternary system was applied to the synthesis of carbon-supported Pt 70Fe30 nanoparticles, and it was found that nanoparticles prepared in microemulsions containing n-butanol have more Fe than those prepared in ternary microemulsions of AOT/n-heptane/water under similar conditions. It was verified that introducing n-butanol as a cosurfactant into the AOT/n-heptane/water system lead to complete reduction of the Fe ions that allowed obtaining alloyed PtFe nanoparticles with the desired composition, without the need of preparing functionalized surfactants and/or the use of inert atmosphere. © 2007 American Chemical Society.
Resumo:
Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.
Resumo:
Topical corticosteroids, e.g., dexamethasone acetate (DMA), are extensively used to treat cutaneous inflammatory disorders even though their use is correlated with potential local and systemic side effects. The objective of this study was to develop and test the topical delivery of DMA-loaded surfactant based systems in vitro; these studies could guarantee a suitable delivery and therapeutic efficacy, as well as minimize DMA's side effects. A phase diagram was constructed using polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol as the surfactant (S), isopropyl myristate as the oil phase (O) and water (W). The systems were characterized using polarization light microscopy (PLM), as well as rheological and small angle X-ray scattering (SAXS) measurements. Depending on the concentration of the constituents, it was possible to obtain microemulsions (MEs) and liquid crystalline mesophases (lamellar and hexagonal). These types of arrangement were verified using PLM measurements. The SAXS results revealed that increasing the W/S ratio led to ME, as well as lamellar (LAM) and hexagonal (HEX) arrangements. The MEs displayed typical Newtonian behavior while the LAM and HEX phases exhibited pseudoplasticity and plasticity, respectively. The MEs displayed excellent drug solubilization that was approximately 10-fold higher than was observed with the individual components. The in vitro cutaneous permeation studies using pig ear skin and analysis of the mechanical parameters (hardness, compressibility, cohesiveness and adhesiveness) were carried out with a HEX phase and O/W emulsion. The HEX phase achieved better drug permeation and retention in the skin while its mechanical properties were suitable for skin administration. PPG-5-CETETH-20-based systems may be a promising platform delivering DMA and other topical corticosteroids through the skin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract The goal of this project is to evaluate the effectiveness of bioswells in protecting water quality from urban runoff. The hypothesis tested in this project is that water in bioswells improves water quality. Water quality in both a bioswell and an underground concrete lined ditch, both containing ground and surface water, were tested for certain water quality parameters. These parameters consisted of: Dissolved Oxygen, pH, water temperature, weather temperature, Total Dissolved Solids, Specific Conductivity, Alkalinity, Total Dissolved Carbon, Chemical Oxygen Demand, and depth and width of the sampling site. An additional contaminant that was looked at was motor oil. This was measured by comparing Total Organic Carbon with Chemical Oxygen Demand. A variety of different methods to measure the water quality parameters were utilized. The concrete site had more stable readings, but much higher water temperatures. However, the bioswell water is mainly from surface water runoff, and the underground concrete lined pipe is from underground water, so the two cannot be directly compared. The bioswell had high readings, especially pertaining to Oxygen Demand, Total Organic Carbon, and Specific Conductivity in early test dates. But, these readings improved as they were filtered though the bioswell. As plant activity increased and the weather began to warm up there were more stable readings. It is concluded that bioswells are an effective way to reduce problems associated with urban runoff pertaining to certain water quality parameters.
Resumo:
Admiralty Bay on the King George Island hosts the Brazilian, Polish and Peruvian research stations as well as the American and Ecuadorian field stations. Human activities in this region require the use of fossil fuels as an energy source, thereby placing the region at risk of hydrocarbon contamination. Hydrocarbon monitoring was conducted on water and sediment samples from the bay over 15 years. Fluorescence spectroscopy was used for the analysis of total polycyclic aromatic hydrocarbons (PAHs) in seawater samples and gas chromatography with flame ionization and/or mass spectrometric detection was used to analyse individual n-alkanes and PAHs in sediment samples. The results revealed that most sites contaminated by these Compounds are around the Brazilian and Polish research stations due to the intense human activities, mainly during the summer. Moreover, the sediments revealed the presence of hydrocarbons from different sources, suggesting a mixture of the direct input of oil or derivatives and derived from hydrocarbon combustion. A decrease in PAH concentrations occurred following improvement of the sewage treatment facilities at the Brazilian research station, indicating that the contribution from human waste may be significant.
Resumo:
The viscosity of AOT/water/decane water-in-oil microemulsions exhibits a well-known maximum as a function of water/AOT molar ratio, which is usually attributed to increased attractions among nearly spherical droplets. The maximum can be removed by adding salt or by changing the oil to CCl4. Systematic small-angle X-ray scattering (SAXS) measurements have been used to monitor the structure of the microemulsion droplets in the composition regime where the maximum appears. On increasing the droplet concentration, the scattering intensity is found to scale with the inverse of the wavevector, a behavior which is consistent with cylindrical structures. The inverse wavevector scaling is not observed when the molar ratio is changed, moving the system away from the value corresponding to the viscosity maximum. It is also not present in the scattering from systems containing enough added salt to essentially eliminate the viscosity maximum. An asymptotic analysis of the SAXS data, complemented by some quantitative modeling, is consistent with cylindrical growth of droplets as their concentration is increased. Such elongated structures are familiar from related AOT systems in which the sodium counterion has been exchanged for a divalent one. However, the results of this study suggest that the formation of non-spherical aggregates at low molar ratios is an intrinsic property of AOT.
Resumo:
High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.
Efficiency of neem oil nanoformulations to Bemisia tabaci (GENN.) Biotype B (Hemiptera: Aleyrodidae)
Resumo:
The nanotechnology, through encapsulation of active ingredients, has showed an important way to avoid problems with quickly degradation of the pesticide molecules. Thus, neem (Azadirachta indica) oil nanoformulations containing beta-ciclodextrin and poli-epsilon-caprolactone (PCL) were tested as to their control efficiency against eggs and nymphs of Bemisia tabaci (Genn.) biotype B reared in soybean. The Lethal Concentration (LC50) was estimated using a commercial neem oil (Organic Neem (R)) on first-instar nymphs to establish the adequate volume of the nanoformulations per treatment. After that, they were sprayed on eggs and first-instar nymphs in laboratory and greenhouse and on third-instar nymphs in greenhouse. The commercial neem oil and distilled water were used as controls. Egg viability was not affected by any treatment. Among six nanoformulations, only one was efficient against the first-instar nymphs in laboratory conditions. However, its effective period was not increased as expected. In greenhouse, first-instar nymphs were more affected by two nanoformulations which were significantly different of the commercial neem oil - the most effective one. No mortality differences among the formulations in the third-instar test were observed. The nanoformulations were less efficient to control the B. tabaci biotype B nymphs than the commercial neem oil.
Resumo:
Babassu is considered one of the greatest native resources in the world and its oil is used in body and hair formulations. The aim of this study was to evaluate the short-term stability in oil-in-water (O/W) nanoemulsions containing babassu oil prepared by emulsification phase inversion submitted to the centrifugation, thermal stress, and heating/cooling cycle tests. The formulations showed no change compared to the droplet size, polydispersity index, pH, and electrical conductivity values after thermal stress and heating/cooling cycle tests. Based on these results, the nanoemulsions obtained can be considered as promising disperse systems for pharmaceutical and cosmetic applications.
Resumo:
A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.
Resumo:
The stability of oil-in-water (O/W) emulsions used as metalworking fluids is a key factor for the economical and environmental balance of the entire metalworking process because used and broken fluids must be recycled or disposed. In this study, the ability of turbidimetric spectroscopy in the ultraviolet and visible light range to detect metalworking fluids destabilization was evaluated. Destabilization was achieved by adding calcium chloride, thus achieving accelerated aging, which leads to coalescence, creaming, and complete emulsion separation. The stability of the metalworking fluids at 5% volumetric concentration in deionized water was monitored using a spectroscopic turbidimeter composed of an optical probe for in-line measurements. Destabilization was also monitored by measuring the vertical profile of backscattered and transmitted light. The results of this offline measurement system were compared with those from the in-line spectroscopic sensor, indicating that the latter can provide local, real-time information on emulsion destabilization, thus enabling control actions.
Resumo:
We describe production of methyl and ethyl esters derived from baru oil (Dipteryx alata Vog.). Water and alcohols are removed from the biodiesel obtained by simple distillation. We study the acidity, density, iodine number, viscosity, water content, peroxide number, external appearance, and saponification number of the oil, its methyl and ethyl esters (biodiesels) and their blends (B5, B10, B15, B20, and B30) with commercial diesel fuel.
Resumo:
Rice bran oil was obtained from rice bran by solvent extraction using ethanol. The influence of process variables, solvent hydration (0-24% of water, on mass basis), temperature (60-90 degrees C), solvent-to-rice bran mass ratio (2.5:1 to 4.5:1) and stirrer speed (100-250 rpm) were analysed using the response surface methodology. The extraction yield was highly affected by the solvent water content, and it varied from 8.56 to 20.05 g of oil/100 g of fresh rice bran (or 42.7-99.9% of the total oil available) depending on the experimental conditions. It was observed that oryzanol and tocols behave in different ways during the extraction process. A larger amount of tocols is extracted from the solid matrix in relation to gamma-oryzanol. It was possible to obtain values from 123 to 271 mg of tocols/kg of fresh rice bran and 1527 to 4164 mg of oryzanol/kg of fresh rice bran, indicating that it is feasible to obtain enriched oil when this renewable solvent is used. No differences in the chemical composition of the extracted oils were observed when compared to the data cited in the literature. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves that are located on the coast of Sao Paulo State (Brazil): (1) an oil-spill-affected mangrove and (2) a nearby unaffected mangrove. Samples were collected from each mangrove forest at three distinct locations (transect from sea to land), and the samples were analyzed by quantitative PCR and internal transcribed spacer (ITS)-based PCR-DGGE analysis. The abundance of fungi was found to be higher in the oil-affected mangrove. Visual observation and correspondence analysis (CA) of the ITS-based PCR-DGGE profiles revealed differences in the fungal communities between the sampled areas. Remarkably, the oil-spilled area was quite distinct from the unaffected sampling areas. On the basis of the ITS sequences, fungi that are associated with the Basidiomycota and Ascomycota taxa were most common and belonged primarily to the genera Epicoccum, Nigrospora, and Cladosporium. Moreover, the Nigrospora fungal species were shown to be sensitive to oil, whereas a group that was described as "uncultured Basidiomycota" was found more frequently in oil-contaminated areas. Our results showed an increase in fungal abundance in the oil-polluted mangrove regions, and these data indicated potential fungal candidates for remediation of the oil-affected mangroves.