914 resultados para glassy carbon electrode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Once petroleum is na exhaustible source of energy, alternative fuels are having more prominence. A much discussed option for replacing fossil fuels is the use of biofuels derived from oils or fats, especially biodiesel. The biodiesel preparation is through a reaction named transesterification, a reaction of triglycerides with a short chain alcohol with a catalyst, producing a mixture of fatty acid esters and glycerol. According to ANP (National Petroleum Agency) specifications, biodiesel can have contaminants due to the catalyst or oil used on its synthesis, such as phosphorus, wich can damage the catalytic converter and cause significant increase in the particles emission. This project aims to develop na alternative method using chemically modified electrodes with iron nanoparticles for determination of phosphorus in biodiesel. For the formation of the iron nanoparticles film on the surface of a glassy carbon electrode, was used a iron sulfate solution. The film was formed after 10 successive cycles, with a scanning speed of 50 mV s-1 and a potential range of -0,9 to -1,25 V. To reduce possible oxides on the surface and activate the electrode, it has been subjected to a cathodic polarization with a potential of -1,25 V for 15 minutes in a sodium hydroxide solution. In cyclic voltammograms obtained in the study of the speed of scanning, there is an increase in the intensity of the anodic and cathodic current peaks. The cathodic peak current varied linearly with the square root of scan rate, showing that the electrode is controlled by diffusion. After successive additions of phosphate there is a linear variation in the current peak in the concentration range of 1,0 x 10-7 a 1,0 x 10-6 mol L-1. To determine if the concentration of phosphorus in real sample, the method of adding standard was used by adding aliquots of phosphate ions in the solution containing soy biodiesel extracted with ....

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five-electron transfer vs. Ag vertical bar AgCl, KCl 3 M reference electrode. Very well-resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L-1 at -1.43, -1.57, -1.73, -1.88, and -2.05 V. The proposed DPV method has a good linear response in the 3.00 - 10.0 mu mol L-1 range, with a limit of detection (L.O.D) of 0.756 mu mol L-1 and 0.831 mu mol L-1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 mu mol L-1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024207jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amperometry coupled to flow injection analysis (FIA) and to batch injection analysis (BIA) was used for the rapid and precise quantification of ciclopirox olamine in pharmaceutical products. The favourable hydrodynamic conditions provided by both techniques allowed a very high throughput (more than 300 injections per hour) with good linear range (2.0200 mu mol L-1) and low limits of detection (below 1.0 mu mol?L-1). The results obtained were compared with titration recommended by the American Pharmacopoeia and also using capillary electrophoresis. Good agreement between all results were achieved, demonstrating the good performance of amperometry combined with FIA and BIA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive electrochemical sensor was successfully developed on multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPc) modified glassy carbon electrode (GC), and used to detect byproducts formed after the electrolysis of benzene. The GC/MWCNT/CoPc electrode was applied in the detection of phenolic compounds using square wave voltammetry (SWV). The proposed sensor exhibited a sequence in the sensitivity of the tested phenols: catechol > hydroquinone > resorcinol > phenol and 1,4-benzoquinone. The detection limits for individual phenols were also calculated: catechol (15.62 mu g L-1), hydroquinone (17.91 mu g L-1), resorcinol (46.12 mu g L-1), phenol (58.83 mu g L-1) and 1,4-benzoquinone (13.75 mu g L-1). The proposed sensor was successfully applied in the determination of the total amount of phenols formed after the benzene oxidation, and the obtained results were in full agreement with those from the HPLC procedure. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to develop a new enzymeless electroanalytical method for the indirect quantification of creatinine from urine sample. This method is based on the electrochemical monitoring of picrate anion reduction at a glassy carbon electrode in an alkaline medium before and after it has reacted with creatinine (Jaffe's reaction). By using the differential pulse voltammetry technique under the optimum experimental conditions (step potential, amplitude potential, reaction time, and temperature), a linear analytical curve was obtained for concentrations of creatinine ranging from 1 to 80 mu mol L-1, with a detection limit of 380 nmol L-1. This proposed method was used to measure creatinine in human urine without the interference of most common organic species normally present in biological fluids (e.g., uric acid, ascorbic acid, glucose, and phosphocreatinine). The results obtained using urine samples were highly similar to the results obtained using the reference spectrophotometric method (at a 95% confidence level). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L-1 for serotonin, to the best of our knowledge one of the lowest values reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudos com eletrodos modificados foram conduzidos utilizando dois sistemas porfirínicos supramoleculares diferentes. O primeiro foi baseado na modificação de eletrodo de carbono vítreo com uma porfirina de níquel tetrarrutenada, [NiIITPyP{RuII(bipy)2Cl}4]4+. A modificação do eletrodo foi realizada por meio de sucessivos ciclos voltamétricos em meio alcalino (pH 13), gerando um eletrodo com característica similar a eletrodos modificados com α-Ni(OH)2. A caracterização química do filme formado foi realizada através das técnicas de voltametria cíclica, ressonância paramagnética eletrônica, espectroscopia eletrônica por reflectância e espectroscopia Raman com ensaio espectro-eletroquímico. Os resultados sugerem a formação de um polímero de coordenação, [µ-O2-NiIITPyP{RuII(bipy)2Cl}4]n, composto por subunidades porfirínicas ligadas entre si por pontes µ-peroxo axialmente coordenadas aos átomos de níquel (Ni-O-O-Ni). O crescimento do filme apresentou dependência da alcalinidade do meio pela formação do precursor octaédrico [Ni(OH)2TRPyP]2+ em solução, pela coordenação de OH- nas posições axiais do átomo de níquel. O processo de eletropolimerização indicou a participação de radical hidroxil, gerado por oxidação eletrocatalítica da água nos sítios periféricos da porfirina contendo o complexo de rutênio. O mesmo eletrodo foi aplicado como sensor eletroquímico para análise amperométrica de ácido fólico em comprimidos farmacêuticos. O sensor foi associado a um sistema de Batch Injection Analysis (BIA) alcançando considerável rapidez e baixo limite de detecção. Para as análises das amostras também foi proposto um método para a remoção da lactose, que agia como interferente. O segundo estudo envolveu a modificação de eletrodos de carbono vítreo com diferentes hemoglobinas, naturais (HbA0, HbA2 e HbS) e sintéticas (Hb-PEG5K2, αα-Hb-PEG5K2 e BT-PEG5K4), para a avaliação da eficiência na redução eletrocatalítica de nitrito mediada por FeI-heme. Os filmes foram produzidos pela mistura de soluções das hemoglobinas com brometo de didodecildimetiltrimetilamônio (DDAB), aplicados nas superfícies com consecutiva evaporação, formando filmes estáveis. Os valores de potencial redox para os processos do grupo heme e a sua associação com a disponibilidade do grupo na proteína foram avaliados por voltametria cíclica. Os valores das constantes de velocidade, k, para redução de nitrito foram obtidos por cronoamperometria em -1,1 V (vs Ag/AgCl(KCl 3M)) que foram utilizados para estudo comparativo entre as espécies sintéticas para eventual aplicação clínica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals are present in industrial waste. These metals can generate a large environmental impact contaminating water, soil and plants. The chemical action of heavy metals has attracted environmental interest. In this context, this study aimed to test t he performance of electrochemical technologies for removing and quantifying heavy metals. First ly , the electroanalytical technique of stripping voltammetry with glassy carbon electrode (GC) was standardized in order to use this method for the quantificatio n of metals during their removal by electrocoagulation process (EC). A nalytical curves were evaluated to obtain reliability of the determin ation and quantification of Cd 2+ and Pb 2+ separately or in a mixture. Meanwhile , EC process was developed using an el ectrochemical cell in a continuous flow (EFC) for removing Pb 2+ and Cd 2+ . The se experiments were performed using Al parallel plates with 10 cm of diameter (  63.5 cm 2 ) . The optimization of conditions for removing Pb 2+ and Cd 2+ , dissolved in 2 L of solution at 151 L h - 1 , were studied by applying different values of current for 30 min. Cd 2+ and Pb 2+ concentrations were monitored during electrolysis using stripping voltammetry. The results showed that the removal of Pb 2 + was effective when the EC pro cess is used, obtaining removals of 98% in 30 min. This behavior is dependent on the applied current, which implies an increase in power consumption. From the results also verified that the stripping voltammetry technique is quite reliable deter mining Pb 2+ concentration , when compared with the measurements obtained by atomic absorption method (AA). In view of this, t he second objective of this study was to evaluate the removal of Cd 2+ and Pb 2+ (mixture solution) by EC . Removal efficiency increasing current was confirmed when 93% and 100% of Cd 2+ and Pb 2+ was removed after 30 min . The increase in the current promotes the oxidation of sacrificial electrodes, and consequently increased amount of coagulant, which influences the removal of heavy metals in solution. Adsortive voltammetry is a fast, reliable, economical and simple way to determine Cd 2+ and Pb 2+ during their removal. I t is more economical than those normally used, which require the use of toxic and expensive reagents. Our results demonstrated the potential use of electroanalytical techniques to monitor the course of environmental interventions. Thus, the application of the two techniques associated can be a reliable way to monitor environmental impacts due to the pollution of aquatic ecosystems by heavy metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho teve como objectivo, o desenvolvimento de um método electroquímico, para quantificação do fármaco carbamazepina (CBZ) em águas contaminadas. Neste trabalho foram utilizados quatro métodos voltamétricos: a voltametria cíclica, a voltametria de varrimento linear, a voltametria de onda quadrada e a voltametria de impulso diferencial. Os eléctrodos de trabalho utilizados foram, o eléctrodo de mercúrio de gota suspensa, o eléctrodo de carbono vítreo clássico e um eléctrodo de carbono vítreo modificado com um filme de nanotubos de carbono de paredes múltiplas (MWCNTs). O eléctrodo de mercúrio de gota suspensa permitiu o estudo da redução da CBZ numa região de potencial mais catódico, e os eléctrodos de carbono vítreo, com e sem modificação, permitiram o estudo da oxidação da CBZ numa região de potencial mais anódico. Nas condições experimentais estudadas, o eléctrodo de mercúrio de gota suspensa revelou ser um sensor voltamétrico pouco eficaz na determinação quantitativa da carbamazepina, em amostras com uma matriz complexa. Entre os eléctrodos de carbono vítreo, o eléctrodo de carbono vítreo modificado com os MWCNTs revelou ser o sensor voltamétrico mais eficaz e sensível, na detecção e determinação da carbamazepina. Modificado com um filme de nanotubos de carbono de paredes múltiplas, que previamente foram dispersos em dihexadecilhidrogenofosfato (DHP) e água, este novo eléctrodo permitiu obter uma resposta electroquímica da CBZ, consideravelmente superior ao eléctrodo não modificado. Utilizando a voltametria de varrimento linear e as condições experimentais consideradas óptimas, o eléctrodo nanoestruturado permitiu obter uma relação linear entre o sinal medido e a concentração da CBZ no intervalo 0.13- 1.60 M (30.7- 378 g -1), com os limites de detecção e quantificação mais baixos, até à data reportados com métodos electroquímicos (0.04 e 0.14M, respectivamente). O eléctrodo modificado foi aplicado na quantificação da CBZ, em formulações farmacêuticas, em águas naturais tratadas e em amostras de águas residuais, ambas dopadas, obtendo-se taxas de recuperação consideravelmente elevadas (100.6%, 98.0%,95.8%, respectivamente). Os resultados obtidos, na análise da CBZ em amostras ambientais, com o eléctrodo modificado, foram comparados com resultados obtidos por HPLC-UV e LC­ ESI-MS/MS, validando o método electroquímico desenvolvido neste trabalho. ABSTRACT: The aim of this work was to develop a new electrochemical method for the quantification of carbamazepine (CBZ) in contaminated waters. ln this study, four voltammetric methods were used: cyclic voltammetry, linear sweep voltammetry, square wave voltammetry and differential pulse voltammetry. the working electrodes used were the hanging mercury drop electrode (HMDE), the classical glassy carbon electrode (GCE), and a glassy carbon electrode modified with a film of multi-walled carbon nanotubes (MWCNls). Using HMDE, the reduction of CBZ was studied in the cathodic potential region. the CGE sensors, with or without modification, allowed the study of CBZ oxidation in the anodic potential region. ln the tested conditions, the results obtained for the quantification of CBZ using the HMDE sensor were not very satisfactory, especially when more complex samples were analysed. When the MWCNls-dihexadecyl hydrogen phosphate (DHP) film­ coated GCE was used for the voltammetric determination of CBZ, the results obtained showed that this modified electrode exhibits excellent enhancement effects on the electrochemical oxidation of CBZ. the oxidation peak current of CBZ at this film­ modified electrode increased significantly, when compared with that at a bare glassy carbon electrode. The enhanced electrooxidation and voltammetry of CBZ at the surface of MWCNTs-DHP film coated GCE in phosphate buffer solution (pH 6.71) was attributed to the unique properties of MWCNTs such as large specific surface area and strong adsorptive properties providing more reaction sites. The proposed method was applied to the quantification of CBZ in pharmaceutical formulations, drinking water and wastewater samples with good recoveries and low limits of detection and quantification (0.04 and 0.14 M, respectively), and was positively compared with chromatographic techniques usually used in the quantification of pharmaceutical compounds in environmental samples. HPLC-UV and LC-ESI-MS/MS were also used in the quantification of CBZ in pharmaceutical formulations and wastewater samples to prove the importance and accuracy of his voltammetric method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry and electrogenerated chemilurninescence (ECL) of tris(2,2-bipyridyl)ruthenium(II) ion-exchanged in Eastman-AQ-carbon nanotube (CNT) composite films were investigated at a glassy carbon (GC) electrode. Eastman-AQ55D is a poly (ester sulfonic acid) cation exchanger available in a commercial dissolved form. It is much more hydrophilic than Nafion due to its unique structure, so Ru(bpy)(3)(2+) does not diffuse into the hydrophobic region where it may lose its electroactivity as that in Nafion. The interfused CNT could act as electronic wires that connect the electrode with Ru(bpy)(3)(2+), which made the composite film much more electronically which finally led to the increasing of Ru(bpy)(3)(2+) conductive. Besides, the negatively charged CNT could also absorb some Ru(bpy)(3)(2+). Moreover, the strong electrostatic interaction between AQ and Ru(bpy)(3)(2+) made the composite films much more stable. The combination of AQ and CNT brings excellent sensitivity with the detection limit as low as 3 x 10(-11) M for TPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prussian blue (PB) supported on graphite powder was prepared by the chemical deposition technique and subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive graphite organosilicate composite. The composite was used as the electrode material to fabricate a three-dimensional PB-modified electrode. PB acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The chemically modified electrode can electrocatalyze the oxidation of hydrazine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability and good repeatability of surface-renewal. Hydrodynamic voltammetric experiments were performed to characterize the electrode as an amperometric sensor for the determination of hydrazine. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.