938 resultados para driving errors
Resumo:
In this action research study, I investigated the careless errors made by my seventh-grade mathematics students on their homework and tests. Beyond analyzing the types of careless errors and the frequency at which they were made, I also analyzed my students’ attitudes toward reviewing their work before they turn it in and self-reflection about the quality of work that they were producing. I found that many students did not know how to review their test before turning it in; no one had ever taught them how to do so. However, when students were given tools to help them with this task, they were able to make strides towards reducing the number of careless errors that they made and began to turn in high quality work that demonstrated their understanding of the content that had been taught. As a result of this research, I plan to teach my students how to go back over their homework and tests before turning them in. I also intend to continue to use the tools that I have produced to encourage students to self-reflect on the work that they have done. Assessment is such an important piece of educating my students and the careless errors made on these assessments needed to be addressed.
Resumo:
The article aims to analyze the process of knowledge creation in Brazilian technology-based companies, using as a background the driving and restrictive factors found in this process. As the pillars of discussion, four main modes of knowledge conversion were used, according to the Japanese model: socialization, externalization, combination and internalization. The comparative case method through qualitative research was carried out in nine technology-based enterprises that had been incubated or have recently passed through the stage of incubation (so-called graduated companies) in the Technology Park of Sao Carlos, state of Sao Paulo, Brazil. Among the main results, the combination of knowledge was identified as more conscious and structured in graduated companies, in relation to incubated companies. In contrast, it was noted that incubated companies have an environment with greater opportunities for socialization, internalization and externalization of knowledge.
Resumo:
We study a model of fast magnetic reconnection in the presence of weak turbulence proposed by Lazarian and Vishniac (1999) using three-dimensional direct numerical simulations. The model has been already successfully tested in Kowal et al. (2009) confirming the dependencies of the reconnection speed V-rec on the turbulence injection power P-inj and the injection scale l(inj) expressed by a constraint V-rec similar to P(inj)(1/2)l(inj)(3/4)and no observed dependency on Ohmic resistivity. In Kowal et al. (2009), in order to drive turbulence, we injected velocity fluctuations in Fourier space with frequencies concentrated around k(inj) = 1/l(inj), as described in Alvelius (1999). In this paper, we extend our previous studies by comparing fast magnetic reconnection under different mechanisms of turbulence injection by introducing a new way of turbulence driving. The new method injects velocity or magnetic eddies with a specified amplitude and scale in random locations directly in real space. We provide exact relations between the eddy parameters and turbulent power and injection scale. We performed simulations with new forcing in order to study turbulent power and injection scale dependencies. The results show no discrepancy between models with two different methods of turbulence driving exposing the same scalings in both cases. This is in agreement with the Lazarian and Vishniac (1999) predictions. In addition, we performed a series of models with varying viscosity nu. Although Lazarian and Vishniac (1999) do not provide any prediction for this dependence, we report a weak relation between the reconnection speed with viscosity, V-rec similar to nu(-1/4).
Resumo:
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
A recent review of the homology concept in cladistics is critiqued in light of the historical literature. Homology as a notion relevant to the recognition of clades remains equivalent to synapomorphy. Some symplesiomorphies are homologies inasmuch as they represent synapomorphies of more inclusive taxa; others are complementary character states that do not imply any shared evolutionary history among the taxa that exhibit the state. Undirected character-state change (as characters optimized on an unrooted tree) is a necessary but not sufficient test of homology, because the addition of a root may alter parsimonious reconstructions. Primary and secondary homology are defended as realistic representations of discovery procedures in comparative biology, recognizable even in Direct Optimization. The epistemological relationship between homology as evidence and common ancestry as explanation is again emphasized. An alternative definition of homology is proposed. (c) The Willi Hennig Society 2012.
Resumo:
This paper introduces a skewed log-Birnbaum-Saunders regression model based on the skewed sinh-normal distribution proposed by Leiva et al. [A skewed sinh-normal distribution and its properties and application to air pollution, Comm. Statist. Theory Methods 39 (2010), pp. 426-443]. Some influence methods, such as the local influence and generalized leverage, are presented. Additionally, we derived the normal curvatures of local influence under some perturbation schemes. An empirical application to a real data set is presented in order to illustrate the usefulness of the proposed model.
Resumo:
Changepoint regression models have originally been developed in connection with applications in quality control, where a change from the in-control to the out-of-control state has to be detected based on the avaliable random observations. Up to now various changepoint models have been suggested for differents applications like reliability, econometrics or medicine. In many practical situations the covariate cannot be measured precisely and an alternative model are the errors in variable regression models. In this paper we study the regression model with errors in variables with changepoint from a Bayesian approach. From the simulation study we found that the proposed procedure produces estimates suitable for the changepoint and all other model parameters.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
Congenital heart disease (CHD) occurs in similar to 1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.
Resumo:
The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.
Resumo:
This work has been supported by Brazilian agencies FAPESP, CNPq, CAPES and grants MICINN BFU200908473 and TIN 201019607, SpanishBrazilian Cooperation PHB20070008 and 7ª Convocatoria De PROYECTOS de COOPERACION INTERUNIVERSITARIAUAMSANTANDER con America Latina
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.