Influence Assessment in an Heteroscedastic Errors-in-Variables Model


Autoria(s): Galea, Manuel; Castro, Mário de
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

29/10/2013

29/10/2013

2012

Resumo

The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.

FONDECYT, Chile [1070919, 11103181]

FONDECYT (Chile)

Identificador

Communications in Statistics - Theory and Methods, Philadelphia, v. 41, n. 8, supl. 1, Part 3, p. 1350-1363, may, 2012

0361-0926

http://www.producao.usp.br/handle/BDPI/36374

10.1080/03610926.2010.543301

http://dx.doi.org/10.1080/03610926.2010.543301

Idioma(s)

eng

Publicador

Taylor and Francis Group, LLC

Philadelphia

Relação

Communications in Statistics - Theory and Methods

Direitos

restrictedAccess

Copyright Taylor and Francis Group, LLC

Palavras-Chave #CASE DELETION #EM ALGORITHM #EQUATION-ERROR MODELS #ERRORS-IN-VARIABLES MODELS #LOCAL INFLUENCE #LINEAR MIXED MODELS #LOCAL INFLUENCE #INCOMPLETE-DATA #REGRESSION #ESTATÍSTICA APLICADA #REGRESSÃO LINEAR #STATISTICS & PROBABILITY
Tipo

article

original article

publishedVersion