974 resultados para Prostaglandina E2
Resumo:
利用149Sm(27Al,4n)172Re反应产生并研究了双奇核172Re的高自旋态。实验中分别在130,135,140和150MeV束流能量下进行了激发函数测量,确立了最佳布居172Re核激发态的束流能量为130MeV。在130MeV能量下,进行了γ-γ符合测量。基于激发函数的测量结果和Kx-γ符合关系,指定了源于172Re的γ射线。通过分析γ射线之间的符合关系,建立了由6个转动带构成的172Re核的能级纲图。依据二准粒子Routhian的计算结果,以及B(M1)/B(E2)的实验提取值与理论值的比较,并结合相邻双奇核的带结构特征,给出了各转动带的准粒子组态。在推转壳模型框架下对转动带的顺排,动力学转动惯量进行了一些讨论
Resumo:
利用在束γ谱学技术和 173Yb(18O, 4n) 熔合蒸发反应研究了 187Pt 的高自旋态能级结构。在 78 和 85 MeV 束流能量下进行了X-γ-t和γ-γ-t符合测量。实验观测到基于νi13/2,ν7/2−[503],νi213/2νj, ν3/2−[512] 和ν1/2−[521] 组态的转动带,并且利用推转壳模型(CSM) 和总Routhian面(TRS) 模型对这些转动带的带交叉,形状共存等性质进行了解释。总Routhian面(TRS)计算表明νi13/2转动带具有显著的负γ形变;负宇称带具有近似长椭球的形变。通过比较带内B(M1)/B(E2)比率的实验值和由 Dönau 和 Frauendorf 的半经典公式得到的理论值,发现ν7/2−[503] 转动带在低转动频率下的带交叉是由一对 h9/2 质子顺排引起的
Resumo:
本论文主要进行了奇奇核~(166)Lu、~(168)Lu和奇中子核~(87)Zr的高自旋态的研究工作,对它们高自旋态的一些物理现象进行了讨论。并且首次对1/2~-[541](direct X)vi_(13/2)组态带的系统学规律进行了总结。主要由以下三个部分组成:~(166,168)Lu高自旋态的研究在最近有关形变奇奇核高自旋态的研究工作中,随着实验上π1/2-[541](direct X)vi_(13/2)带自旋的确定,人们发现除了130区的兀h_(11/2)(direct X)vh_(11/2)和160区的兀h_(11/2)(direct X)vi_(13/2)组态带低自旋旋称反转以外,π1/2~-[541](direct X)vi_(13/2)带的低自旋也是反转的,该转动带低自旋旋称反转现象引起了人们的很大的兴趣并得到很广泛的研究,为了通过π1/2~-[541](direct X)vi_(13/2)带与已知自旋和宇称的基态和一些低激发态相连,确定该转动带的自旋,人们付出了很大的努力。特别是最近几年,一些实验上自旋的确定,使得研究π1/2~-[541](direct X)vi_(13/2)组态带低自旋旋称反转的系统学规律成为可能。需要指出的是在以前的研究结果中,~(166)Lu的π1/2~-[541](direct X)vi_(13/2)组态带的能级摆动规律与相邻奇奇核该组态带的能级摆动规律严重不符,澄清该疑点是我们重新研究该核的主要动力之一。在以前~(168)Lu的研究工作中,只在~(168)Lu中发现两个带,但其中只有晕带的组态得到指定,根据带结构和旋称劈裂的大小估计另一个带极有可能是π1/2~-[541](direct X)vi_(13/2)带。为了澄清以上这些疑点和得到π1/2~-[541](direct X)vi_(13/2)组态带的系统学规律,我们重新研究了。~(166,168)Lu的高自旋态。另外(h_(11/2)_p(i_(13/2))_n组.态带的低自旋旋称反转是一个广为人知的物理现象,但在以前的有关~(166)Lu的结果中对(h_(11/2))_p(i_(13/2))_n组态带白旋的确定与该组态带低自旋旋称反转系统规律相反,这也是我们对~(166)Lu重新研究的一个原因。实验是在北京中国原子能科学研究院HI-13串列加速器上进行的,分别利用入射能量为97MeV和92MeV的~(19)F束通过熔合蒸发反应~(152)Sm(~(19)F,~5n)~(166)Lu和~(154)Sm(~(19)F5n)~(168)Lu布居了~(166)Lu和~(168)Lu的高自旋态。用十台HpGe探测器组成的探测阵列进行γ-γ符合测量,对~(166)Lu和~(168)Lu分别记录了约1.27 * 10~8和0.25 * 10~8个两重和两重以上的符合事件。在~(166)Lu中,共发现了五条转动带,根据它们的顺排在0.28MeV均没有出现上弯,意味着它们的中子均占居i_(13/2)轨道,同时根据在~(165)Lu和~(167)Lu只发现基于9/2~-[514]、7/2~-[404]、1/2~-[541]、1/2~+[411]和5/2~+[402]轨道的转动带及在~(165)Yb和~(167)Hf中晕带均为5/2~+[642]的事实,那么由上述质子轨道和中子轨道组成的转动带是本文发现的五条带的最可能的侯选者。本实验中观察到的五条转动带分别基于7/2~+[404](direct X)5/2~+[642]、9/2~-[514](direct X)5/2~+[642]、1/2~-[541](direct X)5/2~+[642]、5/2~+[402](direct X)5/2~+[642]和1/2~+[642](direct X)5/2~+[642]轨道的转动带。和以前的数据相比主要有以下几点改进:(A)在以前的结果中,包括2000年新发表的有关~(166)Lu的文章,他们均把本文~(166)Lu纲图中(5)和(6)退激系列归属于π1/2~-[541](direct X)v5/2~+[642]转动带,而在本文中通过符合关系一个新的退激系列(7)被发现,根据(6)和(7)之间的符合关系、带交叉频率、γ射线强度和B(M1)/B(E2)的比值等关系,本文认为新发现的退激系列(7)与(6)组成新的π1/2~-[541](direct X)v5/2~+[642]转动带.以前的结果的错误在于把属于1/2~-[541](direct X)5/2~+[642]转动带的α = 0与1/2~-[541](direct X)5/2~+[642]转动带的α = 0误归于一个带,这就澄清了原文献中π1/2~-[541](direct X)v5/2~+[642]转动带能级摆动规律与相邻奇奇核该组态带能级摆动规律不符的疑点,同时把原文献中误归于π1/2~-[541](direct X)v5/2~+[642]转动带的那一个退激系列(5)重新指定为1/2~+[411](direct X)5/2~+[642]带(α = 0);(B)通过分析实验数据、跃迁能量系统学和运用顺排相加性规则对以前实验中建立的9/2~-[514](direct X)5/2~+[642]和7/2~+[404](direct X)5/2~+[642]带的自旋进行了重新指定,把它们的自旋在原文的基础上加1个单位,澄清了以前的有关~(166)Lu结果中对9/2~-[514](direct X)5/2~+[642]组态带自旋的确定与该组态带低自旋旋称反转事实相反的疑点;(C)新发现了基于9/2~-[541](direct X)5/2~+[642]组态的转动带。在~(168)Lu中,共观察到了四条转动带,分别是π1/2~-[541](direct X)v5/2~+[642]、7/2~+[404](direct X)5/2~+[642]、 9/2~-[514](direct X)5/2~+[642]和7/2~+[404](direct X)5/2~-[523](本文新建立的带)带,本文对其中晕带7/2~+[404](direct X)5/2~+[642]的K值取值与原文献中的取值不同,并根据能量系统学和带头激发能指出不同的原因。 除以上所述外,本文还给出了~(166)Lu和~(168)Lu各γ射线的强度、转动参数A、较强γ射线的DCO值、分支比和B(M1)/B(E2)等实验值。基于实验和理论预期的B(M1)/B(E2)比值的比较、各带带交叉行为、顺排相加性、带头激发能和转动参数A对各带的组态和自旋进行了指定。最后通过对实验上对~(162,164)Tm、~(174)Ta和~(176)Re的π1/2~-[541](direct X)vi_(13/2)组态带p-n剩余相互作用信息的提取,指出奇质子核中1/2~-[541]带的带交叉频率相对相邻偶偶核的延迟约三分之一到一半左右,其原因是由于p-n剩余相互作用所造成的(包含了对效应和形变变化的CSM模型能够解释另一半的偏离),可以定性的认为正是由于形变、对相互作用的变化和剩余p-n相互作用三者相结合导致了整个的1/2~-[541]带中带交叉频率的偏离。旋称反转机制综述和πh_(932)(direct X)vi_(l3/2)组态的系统学首先对导致旋称反转的各种机制做一简单回顾,同时对ππh,u2⑩vi,钔组态带系统学规律做一简单总结,总结了πh_(11/2)(direct X)Vi_(13/2)组态带的跃迁能量系统学规律。在最近,随着~(162)Tm、~(164)Tm、~(174)Ta和~(176)Re等几个奇奇核中半退耦带1/2~-[541](direct X)vi_(13/2)的自旋通过实验方法的确定,人们惊奇的发现在上述这些核~(162)Tm、~(164)Tm、~(174)Ta和~(176)Re)中半退耦带1/2~-[541](direct X)vi_(13/2)在低自旋区都是旋称反转的。人们就会很自然的回头去看那些在该区已经布居1/2~-[541](direct X)vi_(l3/2)组态带的那些核,结果发现对于该组态带的自旋的指定是很杂乱无章的,有些自旋的确定即不符合能量系统学又与顺排相加性规则相悖,如在~(172)Ta和~(178)Re中(值得指出的是有关这两个核的文章均是在十年前发表的),自旋的指定明显与最近发表的该区πhg_(9/2)(direct X)vi_(13/2)组态带自旋不符,本文通过能量系统学和顺排相加性对~(172)Ta和~(178)Re的1/2~-541](direct X)vi_(13/2)组态带自旋做了修改,分别增加了3h和h。本文通过对最新结果~(162)Tm、~(164)Tm、~(170)Lu、~(170,174,176)Ta、~(176)Re、~(180)Ir)和以前的结果(~(172)Ta和~(178)Re)及本文的结果(~(166,168)Lu)对上述12个核的1/2~-[541](direct X)vi_(13/2)组态带的S(I) = E(I)-E(I-1)- E(I + 2)-E(I + 1)-E(I - 1)-E(I - 2)]/2~I的变化图的分析,继A ≈ 130区7πh_(11/2)(direct X)vh_(11/2)组态带和A ≈ 160区πh_(11/2)(direct X)vi_(13/2)组态带的系统学规律以后,首次总结出A ≈ 170区π1/2~-541](direct X)vi_(13/2)组态带的系统学规律:反转点的自旋随N的增加而增加,随Z的增加而减小,与πh_(11/2)(direct X)和πh_(11/2)(direct X)vi_(13/2)转动带的系统学规律很相似,即反转点自旋均随中子和质子单调地变化。通过对各种理论模型的研究发现三轴形变、科里奥利力、带交叉与自反转和p-n相互作用在奇奇核中都有可能导致旋称反转,包含有p-n相互作用的粒子-转子模型在πh_(11/2)(direct X)和vh_(11/2)、πh_(11/2)和π1/2 ~-[541](direct X)vi_(13/2)组态带中的旋称反转上取得了某些成功,表明p-n相互作用在解释奇核低自旋反转现象中起着很重要的作用。通过对实验上π1/2~-[541](direct X)vi_(13/2)组态带旋称反转点与文献中理论计算值的比较,得出p-n相互作用强度的变化可能是导致π1/2~-[541](direct X)vi_(13/2)组态带症称反转点变化主要原因的结论。过渡区核~(87)Zr的高自旋态研究在A≈80区,许多原子核的中子和质子数都处在28和50两个满壳层之间,对于这些核而言,任何一种核子数的改变都有可能导致核形状的显著变化。有研究结果表明,对于40≤Z≤45的核来讲,N=46是变形核向球形核变化的转折点。在40≤N≤50区,对Zr(Z=40)同位素系列中诸原子核能级结构伴随中子数改变而发生的变化的研究将会帮助我们了解这个形状变化的过程。我们所研究的~(87)Zr含有47个中子,就处于这个过渡区。实验是在北京中国原子能科学研究院HI-13串列加速器上进行的,利用入射能量为118MeV的~(32)S束通过~(58)Co(~(32)S,3pn)~(87)Zr熔合蒸发反应布居。~(87)Zr的高自旋态,实验用的靶为附有Ta衬的厚度1082μg/cm~2的~(59)Co箔。用7台HpGe探测器组成的探测阵列进行γ-γ符合测量。同时采用一个小平面光子探测器探测低能γ射线。本实验记录了约1.5 * 10。个两重以上的符合事件,建立了自旋直到37/2和43/2的能级纲图。研究的结果表明:~(87)Zr与相邻同中子奇A核的正宇称低激发能级之间存在着很强的相似性,而与相邻奇A核同位素相比,结构变化明显, 这可能表明在该核区对核形变的影响中子占主要地位,质子影响较小。激发能随中子变化的比值图呈阶梯状,认为R ≈ 1.5,R_x ≈ 2.0和R_x ≥ 2.2分别代表核形变的三个区域,即球型核、过渡区核和形变核。通过与相邻(Z,N + 1)偶偶核低激发态能级相比较的方法对各低激发能级组态的主要成分进行了估计,发现随自旋的增加,出现了各能级组态之间的混杂。
Resumo:
本论文首先介绍了原子核高自旋态研究的一般概况以及其物理解释的基本理论,然后介绍了在束Y谱学及其实验技术。在此基础上分析和讨论了141Nd和142Pm核的高自旋态实验研究。利用能量为75-95 Mevl0F束流,通过反应128Te(19F,5ny)142Pm研究了双奇核142Pm的高自旋态能级结构。实验中进行了丫射线激发函数和Y-Y符合测量。建立了限Pm核高自旋态能级纲图,位于前人建议的一个2毫秒、8-同质异能态之上。由测量的丫射线激发函数和Y一Y符合关系,澄清了一个67微秒同质异能态及其衰变混乱的指定,本论文把67微秒同质异能态及其衰变指定给了142Pm,建议此同质异能态的激发能为2828.5 keV,推断此同质异能态的自旋宇称为13-。在本实验研究的同时,有人利用133Cs(13C,4n)142Pm反应报道了一个建立在2毫秒、8-同质异能态之上的142P亩高自旋态能级纲图;除了相应Y跃迁的多极性有较大差别外,他们报道的瞬Pm高自旋态能级纲图与我们建立在67微秒同质异能态上的基本一致。根据能级结构的系统性,识别了四个两准粒子态,一个为g7/2质子空穴耦合h11/2中子空穴激发,另外三个是h11/2质子藕合h11/2中子空穴多重态成员。根据经验壳模型计算建议了几个新建的关键能级的组态。67微秒同质异能态的组态被建议为一个四空穴态(πg_(7/2)~(-1)d_(5/2)~(-2)vh_(11/2)~(-1))_(13)-。通过130Te(16O,5nγ)141Nd反应布居了14tNd的高自旋态能级。对反应产生的在束丫射线进行了γ射线单谱和γ-γ符合测量。基于γ-γ符合关系,对原来的141Nd的高自旋态能级纲图做了很大修改,建立了14lNd核高自旋态能级纲图。新观察到了一个由八条γ射线组成的长E2级联跃迁,并指定给了141Nd。基于实验测量的γ跃迁各向异性,建议了141Nd部分能级的自旋值。根据经验壳模型和粒子震动祸合理论,用一个h11/2价中子空穴祸合142Nd核芯晕态激发定性地解释141Nd的能级结构,新发现的长E2级联跃迁很可能涉及两个hu/2质子激发。
Resumo:
本文简单介绍了原子核集体运动的代数模型-IBM-2,评述了近年来的研究结果;提出了一种确定有效玻色子数的半经验方法,并且提出接近半满壳处偶偶核的有效玻色子数饱和的概念(50~82大壳饱和值为6,82~126大壳饱和值为7,126~184(?)大壳饱和值为8),把稀土区偶偶核的E2和M1之间的关联性及它们的饱和性解释为有效玻色子数的饱和,E_2~+的饱和解释为半满壳附近中子质子四极四极相互作用远大于对力的结果;并把本文关于有效玻色子数的结果用于Q_o和E_2~+系统学,F旋多重态和数值计算中,结果比过去有较大改进;本文还给出了哈密顿量参数的改变对能谱影响的经验规律,并用NPBOS程序计算了~(132-150)Nd偶偶核同位素,~(134)Ba等,对它们的状态特别是其中的混合对称态进行了细致的讨论,能谱和电磁跃迁计算结果与实验数据吻合较好,本文还计算了~(142)Ce的混合比并与实验进行了比较;此外,本文还通过具体的核对IBM-2数值计算参数g_(πv)~((1)) (1=0,2,4)进行了讨论,对M1跃迁算子的两体项作了初步的分析
Resumo:
本论文以A~160区奇奇核的高自旋态核结构为研究对象,详细地总结分析了该区奇奇核[h11/2]p[i13/2]n带的性质,利用在束核谱学实验手段布居和测量了166Ta核高自旋态能级结构、借助模型理论对该核实验结果进行分析,还从理论方面系统地研究了A~160区奇奇核[h11/2]p[i13/2]n带的signature反转现象与形变的关系,取得了一些创新成果。 奇奇核高j组态带的signature反转现象系统地存在于A~160、A~130和A~80核区,目前理论上提出的各种可能机制还不能彻底解释清楚这一现象。本文中较详细地归纳了A~160区奇奇核signature反转带,即[h11/2]p[i13/2]n带,实验数据的一些系统学规律,具体贡献在于 1、总结了晕态[h11/2]p[i13/2]n带的跃迁能量系统学规律,指出存在这种规律的原因在于形变和价核子耦合性质随质子数和中子数增减的有规律变化。 2、展示了随质子数增大和中子数减小该带准粒子顺排角动量相加性逐渐变差的现象,指出这种变差的原因可能是形变减小导致剩余n-p相互作用的增强,以及奇奇核带和与之相比较的奇核带形变差异增大。文中强调了使用顺排角动量相加性规则时要考查相加前后两个signature分支顺排角动量的相对大小。跃迁能量系统学规律和顺排角动量相加性规则是目前指定该区奇奇核[h11/2]p[i13/2]n带核态自旋值的有效工具,上述工作有益于研究新核时正确运用这些工具。文中其它归纳和总结工作也为后续研究提供了较为系统的参考资料。 此前尚未有人对166Ta核做过在束研究,我们在中国原子能科学研究院利用HI-13串列加速器通过141Pr(28Si,3n)反应布居和测量了166Ta核高自旋态。实验中使用了5片厚500μg/cm2纯度98.0%的141Pr自衬靶,7台HpGe反康谱仪和1台平面型HpGe探测器。用改变束流能量测量在束单谱和剩余放射性的方法确认实验中生成了166Ta核并为符合实验选定了束流能量。γ-γ符合实验束流能量为127MeV,实验中共收集到约50×106个两重符合事件。实验后用152Eu放射源对探测系统进行了能量和效率刻度。符合实验数据被反演成γ-γ、X-γ和DCO二维谱。通过处理和分析实验数据,得到以下主要结果: 1、用TaKX射线开窗、比较不同束流能量下的在束单谱和排除已知核射线等方法确认了属于166Ta的射线,根据这些射线的级联关系首次建立起了166Ta核的在束能级纲图,其中包括4条转动带,60条射线。166Ta核的晕带是一条耦合性较强的带,建立起的该带能级纲图中包括16条能级和29条射线,每一signature分支有7条E2拉伸跃迁。另外三条带是两条耦合带和一条双退耦带。其中一条耦合带的耦合性较强、位置较高,可能是4准粒子带。 2、计算γ-γ符合矩阵和DCO矩阵开窗谱中峰下面积,得到了166Ta核55条射线在实验中的相对强度Iγ、29条射线的方向关联系数Iγ(35°)/Iγ(75°)和21个核态退激过程的跃迁强度分支比λ等数据。 3、借助模型计算,为实验中发现的4条转动带指定了组态。晕核组态定为9/2[514]p3/2[651]n, Kπ值为6-。另外两条耦合带的组态被定为9/2[514]p3/2[521]n和9/2[514]p3/2[521]n{3/2[651]n}2,退偶带的组态可能是1/2[514]p3/2[651]n。 4、通过分析跃迁能量系统学规律和运用顺排角动量相加性规则指定了166Ta核晕带核态的自旋值,还使用其它方法倾向性地指定了另外三条带的自旋值。 5、提取了一些核态退激过程B(M1)/B(E2)理论值比实验值偏大,指示该带可能存在负γ形变。另外两条耦合带的B(M1)/B(E2)计算值与实验值比较接近,这方面支持我们对其组态的指定。回弯之前的166Ta核晕带B(M1)/B(E2)值与已知的同位素和同中子素奇奇核晕带值相比大许多,我们认为这是组态和形变变化造成的。 6、166Ta和邻核晕带集体转动惯量随转动角频率平方的变化关系显示准质子占据h11/2子壳顶部轨道时顺排发生得较晚,准中子占据i13/2子壳低部轨道时顺排发生得较早。 7、实验结果显示166Ta核的晕带出现signature反转,signature反转点自旋值和反转点之下M1跃迁摆动幅度都与全区规律相符。 我们研究166Ta核的高自旋态能级结构旨在为研究奇奇核signature反转提供新的实验数据,实验研究达到了预期的目的,实验结果证实了在轻Ta奇奇核同位素中也系统地存在signature反转。 在讨论A~160区奇奇核[h11/2]p[i13/2]n带的signature反转机制方面,作者首次利用现有的TRS计算方法系统地考察了该区32个奇奇核该带形变极其随核子数增减的变化趋势,进而通过CSM计算考察了形变对该带signature劈裂的影响。这方面的研究成果主要包括: 1、计算结果显示,该区核芯较容易在γ形变方向受到价核子的形状极化作用,89≤Z≤95时i13/2准中子一般具有正γ形变驱动作用且随着中子数减小此正γ形变驱动作用逐渐增强,67≤Z≤75时h11/2准质子一般具有负γ形变驱动作用且随着质子数增大此负γ形变驱动作用逐渐增强,Z=63和65时h11/2准质子两个signature组态具有不同方向的γ形变驱动作用,总体看h11/2准质子的γ形变驱动作用没有i13/2准中子的强。 2、只考虑ε2和γ形变参量的TSR计算结果显示A~160区中N=89和91奇奇核的[h11/2]p[i13/2]n带有较大的正γ形变,N≥93奇奇核中该带γ形变则较小或为负γ形变。计算出的不同核该带的γ形变值随中子数增加逐渐减小、随质子数变化的规律较复杂且变化幅度没有随中子数变化时那么明显,Z≤67时一些核两signature的形变还有明显的差异。 3、CSM计算表明正γ形变可以导致费米面附近的h11/2准质子轨道signature反转,并且存在正γ形变时ε2形变、ε4形变、质子对力和质子数的不同都对signature反转幅度和反转点对应的角频率都有影响,[h11/2]p[i13/2]n带两个signature组态形变的不同对费米面附近i13/2准中子轨道的位置也有影响。 4、利用从TRS计算出的形变参量所做CSM计算显示,该区部分奇奇核[h11/2]p[i13/2]n带出现signature反转。计算出的signature反转随中子数或质子数变化趋势有些和实验结果相符,也有一些与实验结果不符,对有些实验上发现signature反转的核还计算不出反转。计算结果预言该区一些没有实验数据的奇奇核[h11/2]p[i13/2]n带中也会存在signature反转,这些核是154Eu、162Ta、164Ta和168Re等。 此前对解释A~160区奇奇核signature反转的系统规律时是否必须考虑γ形变还没有定论,本文工作证实了较明显的正γ形变对signature反转起着重要的作用。但是,单纯考虑γ形变并不能完全再现A~160区奇奇核signature反转规律,今后的研究工作还要系统而细致地考虑各方面因素。
Resumo:
本论文较广泛地开展了对稀土区奇质子核、奇奇核高自旋态的研究,由相互独立的四部分组成: 一、 弱长椭球形变奇质子核159Lu高自旋态的首次研究: 通过熔合蒸发反应144Sm (19F,4n)E=105MeV建立了该核能级纲图,包括负宇称晕带、八极振动带、正宇称三准粒子带。基于Nilsson单粒子模型、推转壳模型(CSM)、系统学等对各自带的组态和自旋进行了指定。讨论了此区奇质子核负宇称πh11/2带的第一带交叉频率、signature劈裂两方面的系统规律和机制。 二、 中等长椭球形变奇奇核162Lu高自旋态研究: 通过核反应139La(28Si,5n)E=150MeV建立了该核能级纲图。除原已被报道的晕核带外,又建立四条转动带,其中两条为四准粒子带。获得了各γ跃迁强度、B(M1)/B(E2)比值等实验结果。各带组态和自旋的指定基于B(M1)/B(E2)比值实验测量与理论预期结果的比较、CSM计算等。通过再现实验signature劈裂值及signature反转频率值的CSM计算指出在现有CSM框架下无法理解Z=71奇奇核的低自旋signature反转。通过对162Lu电磁性质的分析发现了Z=71奇奇核呈现低自旋而不是高自旋反转的可能实验证据。 三、 强长椭形变奇质子核171Lu和173Ta高自旋态的研究: 通过重离子核反应160Gd(19F,6n2p)首次建立171Lu πh9/2[541]1/2-带的第一带交叉频率。基于再现带头激发能的Nilsson模型计算、再现带交叉频率的CSM计算,阐述了此特定轨道的四极形变和十六极形变驱动性质,主张忽略形变驱动作用而仅通过其它机制来解释此带反常延迟带交叉的作法是不全面的。 从对偶偶核能级结构进行拟合的方法入手,对奇质子核与相邻偶偶核的全同带进行了再次的认定,同时首次考察并大量提供了奇质子核与非相邻偶偶核间的全同带。这些将为揭示全同带的机制以及原子核转动惯量对各种绝定因素的定量依赖关系提供有价值的帮助。 四、 强长椭形变奇奇核174Ta高自旋态的研究: 通过160Gd(19F,5n)E=97MeV核反应把原已建立的四条转动带推至更高自旋,并建立三条新转动带以及双退耦带的非优先序列。获得了各γ跃迁强度、B(M1)/B(E2)比值等实验结果。基于多种考虑对各带组态和自旋进行了指定。提出了一个关于奇奇核双退耦带的经验转动谱公试。阐述和分析了各带带交叉行为。首次以有力的实验证据发现了πh11/2 vi13/2转动带的高自旋signature倒置现象。
Resumo:
采用盆栽实验研究了小叶白蜡(Fraxinus sogdiana)接种4种外生菌根真菌(E1-毛边滑锈伞(Hebeloma mesophaeusm)、E2-劣味乳菇(Lactarius insulsns)、E3-松塔牛肝菌(Stro-bilomyces floccopus)和E4-丝膜菌(Cortinarius russus)对沈抚灌区土壤石油烃的降解效果。结果表明:在白蜡不同组合双接种及混合接种中,以混合接种对土壤石油烃的降解效果最好,降解率比对照提高23.6%;其次为双接种中的E1E3和E2E4组合,降解率分别比对照提高21.0%和12.7%。接种外生菌根真菌可促进白蜡生长,尤其可明显提高其根生物量,增加侧根数,接种E1E3、E2E4和混合菌使白蜡侧根数分别增加了100%、67%和81%。相关分析表明,石油烃降解率与白蜡的侧根数呈显著相关,可能是其降解率提高的主要原因。
Resumo:
对DS9701菌株产生的聚β-羟基丁酸酯(PHB)解聚酶进行了分离、纯化及有关性质的表征.通过SephadexG-100分离出两种PHB解聚酶(E1和E2),经聚丙烯酰胺凝胶电脉检测为一条谱带.E1的最适反应温度为40℃~45℃,稳定性优于E2,最适反应pH=4.0,稳定范围3.6~7.0,Km值为0.182g/L.E2的最适反应温度为40℃,pH=6.0,稳定范围4.0~8.0,Km值为0.65g/L.通过质谱仪测得E1的相对分子质量为4.5×104,E2的相对分子质量为4.4×104.
Resumo:
现场圆二色薄层光谱电化学研究去甲肾上腺素的电化学氧化还原过程 .研究表明去甲肾上腺素 ( pH =7.0磷酸缓冲溶液中 )在玻碳电极上经历了不可逆的电化学氧化 ,且遵从后行化学反应 (EC)机理 ,去甲肾上腺素醌和去甲肾上腺素红的再还原遵从简单电子转移 (E)机理 .由双对数法获得去甲肾上腺素电化学氧化的式电位为E10’=0 .2 0V ,电子转移系数和电子转移数之积为αn =0 .38,标准复相电极反应常数k10 =1 .2× 1 0 -4 cm·s-1.去甲肾上腺素醌和去甲肾上腺素红的电化学还原反应参数分别为E2 0’=0 .2 5V ,αn =0 .37,k2 0 =4.4× 1 0 -5 cm·s-1和E3 0’=- 0 .2 5V ,αn =0 .33,k3 0 =1 .1× 1 0 -4 cm·s-1.
Resumo:
该文分别对南大洋磷虾关键种--大磷虾EuphausiasuperbaDana和黄、东海磷虾关键种--太平洋磷虾EuphausiapacificaHansen的某些生态学问题进行了研究,主要研究内容和结果如下:1.大磷虾的环南极分布研究;对中国南极考察1992/1993,1997/1998,1999/2000三个环南极航次的大磷虾样品的分析结果表明.2.南极普里兹湾地区大磷虾的分布、丰度和生长状况研究;对1999/2000年度中国南极考察普里兹湾海区大磷虾样品的分析结果表明,普里兹湾海区大磷虾的丰度比南大西洋海区低.3.东、黄海太平洋磷虾的水平分布研究;该文对1959年全国海洋综合普查资料和2000-2001年973现场调查资料进行了分析.4.东、黄海太平洋磷虾的昼夜垂直分布和迁移;2001年5月对黄海中部E2站上太平洋磷虾各发育期的昼夜垂直分布及迁移的研究.5.东、黄海太平洋磷虾的产卵、孵化及幼体发育.2001年4月底-5月初、5月中旬、6月中旬、8月中旬及11月中旬对黄、东海太平洋磷虾进行了现场培养实验,研究其产卵、孵化及幼体发育情况.
Resumo:
热休克蛋白70是热休克蛋白家族中重要的成员,参与新生蛋白的折叠、转运、重折叠变性蛋白、协助降解变性蛋白和抗逆环境胁迫等功能。海带和裙带菜是浅海潮下带典型的褐藻,孔石莼和浒苔是潮间带典型的绿藻,四种大型海藻均有重要的经济价值和生态价值。随着潮汐变化固着藻类生境理化因素变化剧烈,藻类面临着严重的环境胁迫,因此研究藻类抗逆机理有着重要的意义。 本研究采用同源克隆法配合RACE-PCR,克隆了海带、孔石莼、裙带菜和浒苔HSP70基因的全序列(分别命名为LJHSP70、UPHSP70、QDHSP70和EPHSP70)。利用生物信息学方法分析了四种藻类HSP70结构特征、同源性关系和进化地位。获得的海带HSP70基因全序列长为2918 bp,5’非翻译区为248 bp,3’非翻译区为696 bp,开放阅读框为1974 bp,编码657个氨基酸,预测的分子量为72.03 kDa,等电点为4.97。获得的裙带菜HSP70基因全序列长为3243 bp,5’非翻译区为248 bp,3’非翻译区为1021 bp,开放阅读框为1974 bp,编码657个氨基酸,预测的分子量为72.03 kDa,等电点为4.96。获得的孔石莼HSP70基因全序列长为2283 bp,5’非翻译区为65 bp,3’非翻译区为247 bp,开放阅读框为1971 bp,编码656个氨基酸,预测的分子量为71.13 kDa,等电点为5.04。获得的浒苔HSP70基因全序列长为2265 bp,5’非翻译区为65 bp,3’非翻译区为217 bp,开放阅读框为1983 bp,编码660个氨基酸,预测的分子量为71.39 kDa,等电点为5.03。四种海藻HSP70氨基酸序列均含有四肽重复序列GGMP,具有三个典型的HSP70签名基序。细胞质定位的HSP70 C-末端特征基序为EEID或EEVD,并且N-端氨基酸序列保守性高于C-端。海带和裙带菜HSP70蛋白同源性为98%,孔石莼和浒苔HSP70蛋白同源性为96%,四种海藻HSP70蛋白序列与陆地植物和其他藻类HSP70蛋白序列同源性为70-80%。 利用荧光定量RT-PCR技术对不同胁迫条件处理的海带和孔石莼HSP70 mRNA的表达水平进行定量分析。不同热激温度(5-40 ℃)处理组中,30 ℃处理组的海带HSP70 mRNA表达量最高是10 ℃处理组的海带HSP70 mRNA表达量的3倍,而35 ℃或40 ℃处理组的海带HSP70表达量却低于25 ℃或30 ℃处理组的海带HSP70 mRNA表达量。25 ℃不同热激时间(0-12 h)处理组中,海带HSP70 mRNA表达量呈先上升后下降趋势。热激1 h后海带HSP70 mRNA表达量迅速上升,热激7 h后mRNA表达量达到最大,是对照组表达量的4倍。不同盐度(0‰-45‰)胁迫处理组中,0‰或5‰盐度处理组的海带HSP70 mRNA表达量是30‰盐度处理组海带HSP70 mRNA表达量的3倍。35‰、40‰和45‰盐度处理组之间HSP70 mRNA表达量较低且无显著差异。 不同热激温度(5-40℃)处理组中,20 ℃或25 ℃处理的孔石莼HSP70 mRNA表达量较低,而5 ℃、35 ℃、或40 ℃处理组的孔石莼HSP70 mRNA的表达量是25 ℃处理组孔石莼HSP70 mRNA表达量的2倍以上。30 ℃不同热激时间(0-12 h)处理组中,孔石莼HSP70 mRNA表达量也呈先上升后下降趋势。热激5 h后孔石莼HSP70 mRNA表达量达到最大,是对照组的3.5倍。不同盐度(0‰-45‰)胁迫处理组中,0‰或5‰盐度处理组的孔石莼HSP70 mRNA表达量是30‰盐度处理组孔石莼HSP70表达量的3倍。30‰、40‰和45‰盐度处理组孔石莼HSP70 mRNA表达量较低,且无显著差异。不同紫外线照射时间(0-4.0 h)和不同干燥时间(0-4.0 h)处理组中,孔石莼HSP70 mRNA表达量都在3 h后达到最高值,之后表达量维持在较高水平。 为进一步研究藻类HSP70的生物学功能,将海带HSP70基因的开放阅读框区域克隆到表达载体pEASY-E2中,并转化到大肠杆菌BL21(DE3)pLysS。将阳性重组子培养于含有AMP(100 U/mL)的LB培养基,IPTG诱导表达,SDS-PAGE电泳鉴定。经5 h诱导,其表达量达到平台期,继续培养HSP70表达量并不显著增高。5 mM IPTG诱导海带HSP70蛋白表达量高于1 mM IPTG诱导蛋白表达量。
Resumo:
以江河源区退化高寒草甸为对象,利用层次分析法,探讨了高寒草地的退化原因和恢复治理措施的有效性.结果表明:长期超载过牧和暖干化气候是导致高寒草甸退化的主导因子,贡献率为65.99%;伴随草地初始退化出现的鼠虫和毒杂草泛滥危害是加速高寒草甸退化的重要因子,贡献率为15.03%;人类不合理干扰造成的高寒草甸退化也不应忽视,贡献率为9.64%.各个恢复治理措施组合权重的分配格局相对均衡,其中围栏封育和划区轮牧(E2)与控制放牧强度(E1),效益较好,组合权重达0.3007.层次分析法可为草原管理,防止草地退化、恢复治理退化草地、优化利用草地资源提供定量依据.
Resumo:
在人工模拟低氧环境下(低压舱模拟5 000 m和7 000m 海拔高度) , 低氧暴露24 h 和7 d,观察低氧对受试动物性腺的影响。结果表明, 急性低氧24 h, 高原鼠兔血浆雌二醇(E2) 明显升高; 低氧暴露7 d, 高原鼠兔血浆E2仍维持一较高水平; 5 000 m 低氧暴露7 d, 其睾丸指数无明显变化, 7 000 m 时却有所降低。同等条件下, 大鼠睾丸指数明显增高; 5 000 m 和7 000m 低氧暴露7d 对高原鼠兔睾丸组织形态无明显影响, 然而, 大鼠曲细精管间隙增大, 且曲细精管内各级细胞排列紊乱。低氧环境下, 高原鼠兔雄体血浆E2增高, 可能是其低氧适应的特征之一。
Resumo:
对准噶尔盆地构造特征、地层分布和地层不整合等特征进行的研究结果表明,该盆地内经历了裂陷盆地、碰撞前陆盆地、陆内坳陷盆地和陆内俯冲前陆盆地等4个演化阶段。裂陷盆地控制了石炭系烃源岩,使其沿裂陷槽分布;碰撞前陆盆地将二叠系烃源岩局限于玛湖、昌吉、克拉美丽山等山前坳陷内;陆内坳陷期从三叠纪一直持续到古近纪末,盆地内泥岩和煤岩广泛分布;陆内俯冲前陆盆地发育在南缘西部。因而,古、新近系烃源岩主要分布在安集海—呼图壁一带。烃源岩演化和油源对比表明,盆地内有3次成藏期,分别为印支期(T3)、燕山期(J3)和喜山期(E2),形成了石炭系、二叠系、侏罗系和古近系4个复合含油气系统。根据构造特征和成藏条件的差异性,在盆地内可划分出西北部、西部、南部、东部和腹部5个油气聚集区带。准噶尔盆地的成藏模式主要有逆冲断阶-不整合单向充注、压扭背斜双向充注、断隆带双向充注、披覆背斜单向充注、逆冲背斜带单向充注和斜坡带单向充注6种类型。