990 resultados para Penning traps, quantum electrodynamic, electron
Resumo:
A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.
Resumo:
The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.
Resumo:
In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.
Resumo:
We investigate the quantum dynamics of the quantum-dot cellular automata qubit in the presence of a quantum point contact detector by modified rate equations. It is demonstrated that the qubit information can be resolved by measuring the detector current variation. Furthermore, we show that this oscillating current and the electron occupation probabilities in states \b> and \c> decay drastically as the dephasing rate increases, clearly revealing the influence of the dephasing induced by the detector. Moreover, it is shown that the operation speed of the quantum-dot cellular automata qubit may be adjusted by varying the interdot coupling strength. (C) 2003 American Institute of Physics.
Resumo:
GaAsSb/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy are studied by selectively-excited photoluminescence (SEPL) measurement. For the first time, we have simultaneously observed the PL, from both type I and type II transitions in GaAsSb/GaAs heterostructure in the SEPL. The two transitions exhibit different PL, behaviours under different excitation energy. As expected, the peak energy of type I emission remains constant in the whole excitation energy range we used, while type U transition shows a significant blue shift with increasing excitation energy. The observed blue shift is well explained in terms of electron-hole charge separation model at the interface. Time-resolved(TR) PL exhibits more type 11 characteristic of GaAsSb/GaAs QW. Moreover, the results of the excitation-power-dependent PL and TRPL provide more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum-well structures. By combining the experimental results with some simple calculations, we have obtained the strained and unstrained valence band offsets of Q(v) = 1.145 and Q(v)(0) = 0. 76 in our samples, respectively.
Resumo:
The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.
Resumo:
Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.
Resumo:
The growth interruption (GI) effect on GaSb quantum dot formation grown on GaAs by molecular beam epitaxy was investigated. The structure characterization was performed by reflection high-energy electron diffraction (RHEED), along with photoluminescence measurements. It is found that the GI can significantly change the surface morphology of GaSb QDs. During the GI, the QDs structures can be smoothed out and turned into a 2D-like structure. The time duration of the GI required for the 3D/2D transition depends on the growth time of the GaSb layer. It increases with the increase of the growth time. Our results are explained by a combined effect of the stress relaxation process and surface exchange reactions during the GI. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.
Resumo:
GaAsSb/GaAs single quantum wells grown by molecular-beam epitaxy are studied by selectively excited photoluminescence measurements. We have simultaneously observed the photoluminescence (PL) from both type-I and type-II transitions in the samples. The two transitions exhibit different PL behavior under different excitation energies. As expected, the peak energy of the type-I emission remains constant in the entire excitation energy range we used, while the type-II transition shows a significant blueshift with increasing excitation energy. The observed blueshift can be well explained by an electron-hole charge separation model at interface. This result, along with the excitation-power-dependent PL and the measured longer carrier decay time, provides more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum well structures. (C) 2002 American Institute of Physics.
Resumo:
The storage of photoexcited electron-hole pairs is experimentally carried out and theoretically realized by transferring electrons in both real and k spaces through resonant Gamma - X in an AlAs/GaAs heterostructure. This is proven by the peculiar capacitance jump and hysteresis in the measured capacitance-voltage curves. Our structure may be used as a photonic memory cell with a long storage time and a fast retrieval of photons as well.
Resumo:
The electronic structure of quantum rings is studied in the framework of the effective-mass theory and the two dimensional hard wall approximation. In cases of both the absence and presence of a magnetic field the electron momenta of confined states and the Coulomb energies of two electrons are given as functions of the angular momentum, inner radius, and magnetic-field strength. By comparing with experiments it is found that the width of the real confinement potential is 14 nm, much smaller than the phenomenal width. The Coulomb energy of two electrons is calculated as 11.1 meV. The quantum waveguide transport properties of Aharonov-Bohm (AB) rings are studied complementarily, and it is found that the correspondence of the positions of resonant peaks in AB rings and the momentum of confined states in closed rings is good for thin rings, representing a type of resonant tunneling.
Resumo:
The full spectra of magnetoplasmons and single-particle excitations are obtained of coupled one-dimensional electron gases in parallel semiconductor quantum wires with tunneling. We show the effects of the interwire Coulomb interaction and the tunneling, as well as the magnetic-field-induced localization on the elementary excitations in symmetric and asymmetric coulped quantum wire structures. The interacton and resonance between the plasmon and the intersubband single-particle excitations are found in magnetic fields.
Resumo:
In this letter, we propose a scheme to buildup a highly coherent solid-state quantum bit (qubit) from two coupled quantum dots. Quantum information is stored in the state of the electron-hole pair with the electron and hole located in different dots, and universal quantum gates involving any pair of qubits are realized by effective coupling interaction via virtually exchanging cavity photons. (C) 2002 American Institute of Physics.