927 resultados para Pedro el Ermitaño, 1050-1115
Resumo:
En este trabajo exploramos la problemática de la enseñanza y el aprendizaje del análisis fenomenológico en un programa de máster de formación de profesores de matemáticas de secundaria en ejercicio basado en el modelo del análisis didáctico. Con base en la descripción de los aspectos teóricos y técnicos de este organizador del currículo, establecemos una serie de acciones que permiten describir la actuación de los profesores en formación en sus producciones escritas. Identificamos y caracterizamos la dificultad manifestada por los profesores en formación sobre las principales ideas que configuran este procedimiento.
Resumo:
Proponer ideas lúdicas para explotar la imaginación de los estudiantes teniendo presente siempre conceptos matemáticos.
Resumo:
El presente reporte articula el modelo educativo de van Hiele en su aspecto prescriptivo con la enseñanza de uno de los conceptos fundamentales del Análisis Matemático, continuidad local, a través de la implementación y el desarrollo de un Módulo de Aprendizaje que permite procesos de razonamiento en los estudiantes con el fin de promoverlos de un Nivel II a un Nivel III, el módulo es construido en correspondencia con los descriptores de fases para de dar cuenta de las estructuras mentales elaboradas. Posteriormente, en el análisis de cada uno de los tres casos, se describe en categorías en correspondencia los descriptores y donde se hace explícito como razonan los estudiantes en su paso del Nivel II al Nivel III respecto al concepto de continuidad local.
Resumo:
La evaluación es tema fundamental en la discusión sobre la educación matemática y sus referentes incorporan aspectos conceptuales, sino metodológicos, didácticos de la matemática escolar acorde con los lineamientos vigentes. Tal es el caso de la evaluación por competencias en el Examen de Estado, que ha sido objeto de análisis y críticas sobre la manera como ha interpretado y diseñado el instrumento de evaluación, en particular las preguntas que dan cuenta de las competencias interpretativa, argumentativa y propositiva en matemáticas. Sabemos que su análisis permite conceptualizar cada vez mejor la evaluación y así mismo ofrecer a la comunidad de matemática educativa otros elementos de reflexión sobre lo que nos ocupa: cualificar la educación básica y media.
Resumo:
La introducción a la clase de matemáticas de la calculadora TI 92 Plus y otros dispositivos, tales como el CBR, están generando una nueva cultura matemática, caracterizar algunos rasgos de éste fenómeno educativo en la modelación del movimiento pendular es el propósito central de la presente investigación. El trabajo de los estudiantes permitió observar en la práctica los constitutivos del marco teórico del proyecto de incorporación de nuevas tecnologías al currículo de matemáticas de Colombia, como son: mediación instrumental, representaciones ejecutables, cognición situada, solución de problemas, fluidez algorítmica y fluidez conceptual.
Resumo:
En este momento la educación matemática en el país se encuentra cruzando por un período crítico caracterizado por transformaciones fruto de la implementación de las políticas del Ministerio de Educación Nacional. Una de ellas, relacionada con los estándares básicos de matemáticas, son punto neurálgico para el sistema educativo en general. Su implementación en las instituciones educativas del país deberá generar espacios de reflexión, debate, análisis, confrontación, etc., a partir de los cuales se introduzcan formas nuevas de comprender, implementar, evaluar y transformar el currículo de matemáticas de nuestro país.
Resumo:
En el marco del programa de Examen de Estado para ingreso a la Educación Superior del ICFES, se ha venido desarrollando la evaluación de competencias en diferentes áreas del conocimiento desde el año 2000, y se ha constituido en tema de permanente discusión y reflexión de distintos ámbitos de la educación en el país. Con este taller se propone ampliar la discusión sobre esta evaluación de competencias en matemáticas como son los ejes conceptuales y las competencias interpretativa, argumentativa y propositiva.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
En el trabajo que hemos venido realizando en las pasantías de extensión, pretendemos desarrollar parte de la trigonometría desde la época griega hasta la actualidad; tomando como eje central la proporcionalidad, basados en una metodología de resolución de problemas e implementado la calculadora T.I.- 92 Plus en el aula. Para llevar a cabo este proyecto, diseñamos una serie de actividades enfocadas a desarrollar el concepto de proporcionalidad, trabajando desde la semejanza de triángulos. Este enfoque permite al estudiante, por medio de sus experiencias, construir un conjunto de herramientas que le contribuya no sólo enfrentarse a una situación problema, sino que también le ayude a desarrollar su comprensión y habilidad matemáticas.
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
Pensar en una evaluación en competencias nos remite a pensar, en el sentido de la evaluación, del termino competencia, pero sobre todo a las practicas pedagógicas sobre componentes curriculares y su sentido en la formación de los niños y jóvenes de nuestro país. Una evaluación en competencias, es una evaluación que centra la atención en el saber hacer y en el hacer sabiendo, que debe permitir reconocer las diferencias y las potencialidades de nuestros jóvenes, de esta manera el reto pedagógico de todo maestro radica en el tipo de problema o de actividad que le propone al estudiante para activar sus competencias o favorecer su desarrollo. Los desempeños son expresiones de esas competencias y aunque no son exclusivos de una determinada área si están asociados a campos del saber específicos, dadas las particularidades de las disciplinas de conocimiento. Es en este sentido que nos proponemos discutir sobre algunas competencias y desempeños asociados al saber algebraico.
Resumo:
Este estándar recomienda que los estudiantes formulen preguntas que puedan ser resueltas usando la recolección de datos y su interpretación. Los estudiantes podrán aprender a coleccionar datos, organizar sus propios datos o los de los demás, y disponerlos en gráficas y diagramas que sean útiles para responder preguntas. Los conceptos básicos de probabilidad se pueden manejar de mano de los conceptos estadísticos.
Resumo:
En esta conferencia presentaré algunos resultados del estudio realizado sobre un fenómeno relacionado con la articulación de los sentidos asignados por estudiantes a diferentes representaciones de un objeto matemático, obtenidas mediante transformaciones semióticas de tratamiento. En este estudio describí y analicé algunos procesos de asignación de sentidos logrados por los estudiantes de grados 9o y 11o de educación básica y media (Colombia), en relación con tareas específicas en las que requieren realizar dichos tratamientos entre representaciones, y reporté algunas dificultades asociadas.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
En este capítulo,describimos nuestras actuaciones para el diseño e implementación de la unidad didáctica relacionada con el cálculo de áreas de polígonos por el método de descomposición y recomposición. Inicialmente, efectuamos la formulación del problema, al enfocarlo desde la normativa curricular colombiana, y describimos el proceso de selección del tema y los contextos social, institucional y académico del colegio donde se implementó. Después, explicamos el proceso del diseño basado en el análisis didáctico realizado sobre el tema. Seguidamente, describimos los instrumentos y procedimientos de recolección y análisis de la información. Posteriormente, describimos el diseño que se implementó, detallamos la evaluación realizada al diseño y a la implementación, y mostramos una propuesta de mejora para una futura aplicación. Por último, presentamos conclusiones de aspectos relevantes en el diseño e implementación de la unidad didáctica y listamos las referencias y anexos.