985 resultados para Parallel computation
Resumo:
In this paper, the diversity-multiplexing gain tradeoff (DMT) of single-source, single-sink (ss-ss), multihop relay networks having slow-fading links is studied. In particular, the two end-points of the DMT of ss-ss full-duplex networks are determined, by showing that the maximum achievable diversity gain is equal to the min-cut and that the maximum multiplexing gain is equal to the min-cut rank, the latter by using an operational connection to a deterministic network. Also included in the paper, are several results that aid in the computation of the DMT of networks operating under amplify-and-forward (AF) protocols. In particular, it is shown that the colored noise encountered in amplify-and-forward protocols can be treated as white for the purpose of DMT computation, lower bounds on the DMT of lower-triangular channel matrices are derived and the DMT of parallel MIMO channels is computed. All protocols appearing in the paper are explicit and rely only upon AF relaying. Half-duplex networks and explicit coding schemes are studied in a companion paper.
Resumo:
As power systems grow in their size and interconnections, their complexity increases. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems be operated closer to design limits. Hence power system voltage stability and voltage control are emerging as major problems in the day-to-day operation of stressed power systems. For secure operation and control of power systems under normal and contingency conditions it is essential to provide solutions in real time to the operator in energy control center (ECC). Artificial neural networks (ANN) are emerging as an artificial intelligence tool, which give fast, though approximate, but acceptable solutions in real time as they mostly use the parallel processing technique for computation. The solutions thus obtained can be used as a guide by the operator in ECC for power system control. This paper deals with development of an ANN architecture, which provide solutions for monitoring, and control of voltage stability in the day-to-day operation of power systems.
Resumo:
Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.
Resumo:
A finite-element scheme based on a coupled arbitrary Lagrangian-Eulerian and Lagrangian approach is developed for the computation of interface flows with soluble surfactants. The numerical scheme is designed to solve the time-dependent Navier-Stokes equations and an evolution equation for the surfactant concentration in the bulk phase, and simultaneously, an evolution equation for the surfactant concentration on the interface. Second-order isoparametric finite elements on moving meshes and second-order isoparametric surface finite elements are used to solve these equations. The interface-resolved moving meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps in the material parameters. The lower-dimensional finite-element meshes for solving the surface evolution equation are part of the interface-resolved moving meshes. The numerical scheme is validated for problems with known analytical solutions. A number of computations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have been performed. The proposed scheme shows excellent conservation of fluid mass and of the total mass of the surfactant. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
A robust numerical solution of the input voltage equations (IVEs) for the independent-double-gate metal-oxide-semiconductor field-effect transistor requires root bracketing methods (RBMs) instead of the commonly used Newton-Raphson (NR) technique due to the presence of nonremovable discontinuity and singularity. In this brief, we do an exhaustive study of the different RBMs available in the literature and propose a single derivative-free RBM that could be applied to both trigonometric and hyperbolic IVEs and offers faster convergence than the earlier proposed hybrid NR-Ridders algorithm. We also propose some adjustments to the solution space for the trigonometric IVE that leads to a further reduction of the computation time. The improvement of computational efficiency is demonstrated to be about 60% for trigonometric IVE and about 15% for hyperbolic IVE, by implementing the proposed algorithm in a commercial circuit simulator through the Verilog-A interface and simulating a variety of circuit blocks such as ring oscillator, ripple adder, and twisted ring counter.
Resumo:
Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.
Resumo:
Unending quest for performance improvement coupled with the advancements in integrated circuit technology have led to the development of new architectural paradigm. Speculative multithreaded architecture (SpMT) philosophy relies on aggressive speculative execution for improved performance. However, aggressive speculative execution comes with a mixed flavor of improving performance, when successful, and adversely affecting the energy consumption (and performance) because of useless computation in the event of mis-speculation. Dynamic instruction criticality information can be usefully applied to control and guide such an aggressive speculative execution. In this paper, we present a model of micro-execution for SpMT architecture that we have developed to determine the dynamic instruction criticality. We have also developed two novel techniques utilizing the criticality information namely delaying the non-critical loads and the criticality based thread-prediction for reducing useless computations and energy consumption. Experimental results showing break-up of critical instructions and effectiveness of proposed techniques in reducing energy consumption are presented in the context of multiscalar processor that implements SpMT architecture. Our experiments show 17.7% and 11.6% reduction in dynamic energy for criticality based thread prediction and criticality based delayed load scheme respectively while the improvement in dynamic energy delay product is 13.9% and 5.5%, respectively. (c) 2012 Published by Elsevier B.V.
Resumo:
The experimental implementation of a quantum algorithm requires the decomposition of unitary operators. Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm-a global-optimization method inspired by nature's evolutionary process-for operator decomposition. We apply this method to NMR quantum information processing, and find a probabilistic way of performing universal quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses. © 2012 American Physical Society.
Resumo:
The experimental implementation of a quantum algorithm requires the decomposition of unitary operators. Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm-a global-optimization method inspired by nature's evolutionary process-for operator decomposition. We apply this method to NMR quantum information processing, and find a probabilistic way of performing universal quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses.
Resumo:
Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
This article does not have an abstract.
Resumo:
This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.