866 resultados para Monitoring Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thrombophilia (TF) predisposes both to venous and arterial thrombosis at a young age. TF may also impact the thrombosis or stenosis of hemodialysis (HD) vascular access in patients with end-stage renal disease (ESRD). When involved in severe thrombosis TF may associate with inappropriate response to anticoagulation. Lepirudin, a potent direct thrombin inhibitor (DTI), indicated for heparin-induced thrombocytopenia-related thrombosis, could offer a treatment alternative in TF. Monitoring of narrow-ranged lepirudin demands new insights also in laboratory. The above issues constitute the targets in this thesis. We evaluated the prevalence of TF in patients with ESRD and its impact upon thrombosis- or stenosis-free survival of the vascular access. Altogether 237 ESRD patients were prospectively screened for TF and thrombogenic risk factors prior to HD access surgery in 2002-2004 (mean follow-up of 3.6 years). TF was evident in 43 (18%) of the ESRD patients, more often in males (23 vs. 9%, p=0.009). Known gene mutations of FV Leiden and FII G20210A occurred in 4%. Vascular access sufficiently matured in 226 (95%). The 1-year thrombosis- and stenosis-free access survival was 72%. Female gender (hazards ratio, HR, 2.5; 95% CI 1.6-3.9) and TF (HR 1.9, 95% CI 1.1-3.3) were independent risk factors for the shortened thrombosis- and stenosis-free survival. Additionally, TF or thrombogenic background was found in relatively young patients having severe thrombosis either in hepatic veins (Budd-Chiari syndrome, BCS, one patient) or inoperable critical limb ischemia (CLI, six patients). Lepirudin was evaluated in an off-label setting in the severe thrombosis after inefficacious traditional anticoagulation without other treatment options except severe invasive procedures, such as lower extremity amputation. Lepirudin treatments were repeatedly monitored clinically and with laboratory assessments (e.g. activated partial thromboplastin time, APTT). Our preliminary studies with lepirudin in thrombotic calamities appeared safe, and no bleeds occurred. An effective DTI lepirudin calmed thrombosis as all patients gradually recovered. Only one limb amputation was performed 3 years later during the follow-up (mean 4 years). Furthermore, we aimed to overcome the limitations of APTT and confounding effects of warfarin (INR of 1.5-3.9) and lupus anticoagulant (LA). Lepirudin responses were assessed in vitro by five specific laboratory methods. Ecarin chromogenic assay (ECA) or anti-Factor IIa (anti-FIIa) correlated precisely (r=0.99) with each other and with spiked lepirudin in all plasma pools: normal, warfarin, and LA-containing plasma. In contrast, in the presence of warfarin and LA both APTT and prothrombinase-induced clotting time (PiCT®) were limited by non-linear and imprecise dose responses. As a global coagulation test APTT is useful in parallel to the precise chromogenic methods ECA or Anti-FIIa in challenging clinical situations. Lepirudin treatment requires multidisciplinary approach to ensure appropriate patient selection, interpretation of laboratory monitoring, and treatment safety. TF seemed to be associated with complicated thrombotic events, in venous (BCS), arterial (CLI), and vascular access systems. TF screening should be aimed to patients with repeated access complications or prior unprovoked thromboembolic events. Lepirudin inhibits free and clot-bound thrombin which heparin fails to inhibit. Lepirudin seems to offer a potent and safe option for treatment of severe thrombosis. Multi-centered randomized trials are necessary to assess the possible management of complicated thrombotic events with DTIs like lepirudin and seek prevention options against access complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resources of health systems are limited. There is a need for information concerning the performance of the health system for the purposes of decision-making. This study is about utilization of administrative registers in the context of health system performance evaluation. In order to address this issue, a multidisciplinary methodological framework for register-based data analysis is defined. Because the fixed structure of register-based data indirectly determines constraints on the theoretical constructs, it is essential to elaborate the whole analytic process with respect to the data. The fundamental methodological concepts and theories are synthesized into a data sensitive approach which helps to understand and overcome the problems that are likely to be encountered during a register-based data analyzing process. A pragmatically useful health system performance monitoring should produce valid information about the volume of the problems, about the use of services and about the effectiveness of provided services. A conceptual model for hip fracture performance assessment is constructed and the validity of Finnish registers as a data source for the purposes of performance assessment of hip fracture treatment is confirmed. Solutions to several pragmatic problems related to the development of a register-based hip fracture incidence surveillance system are proposed. The monitoring of effectiveness of treatment is shown to be possible in terms of care episodes. Finally, an example on the justification of a more detailed performance indicator to be used in the profiling of providers is given. In conclusion, it is possible to produce useful and valid information on health system performance by using Finnish register-based data. However, that seems to be far more complicated than is typically assumed. The perspectives given in this study introduce a necessary basis for further work and help in the routine implementation of a hip fracture monitoring system in Finland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in-situ power monitoring technique for Dynamic Voltage and Threshold scaling (DVTS) systems is proposed which measures total power consumed by load circuit using sleep transistor acting as power sensor. Design details of power monitor are examined using simulation framework in UMC 90nm CMOS process. Experimental results of test chip fabricated in AMS 0.35µm CMOS process are presented. The test chip has variable activity between 0.05 and 0.5 and has PMOS VTH control through nWell contact. Maximum resolution obtained from power monitor is 0.25mV. Overhead of power monitor in terms of its power consumption is 0.244 mW (2.2% of total power of load circuit). Lastly, power monitor is used to demonstrate closed loop DVTS system. DVTS algorithm shows 46.3% power savings using in-situ power monitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for placement of Phasor Measurement Units, ensuring the monitoring of vulnerable buses which are obtained based on transient stability analysis of the overall system. Real-time monitoring of phase angles across different nodes, which indicates the proximity to instability, the very purpose will be well defined if the PMUs are placed at buses which are more vulnerable. The issue is to identify the key buses where the PMUs should be placed when the transient stability prediction is taken into account considering various disturbances. Integer Linear Programming technique with equality and inequality constraints is used to find out the optimal placement set with key buses identified from transient stability analysis. Results on IEEE-14 bus system are presented to illustrate the proposed approach.