968 resultados para Matemáticos
Resumo:
A partir de la novela El curioso incidente del perro a medianoche de Mark Haddon, en la que se plantean diversos temas matemáticos, proponemos una serie de actividades para el alumno. A través de este trabajo se trata de demostrar que la literatura no es ajena a las matemáticas, además de animar a la lectura y enseñar temas matemáticos de interés en la actualidad como la criptografía de clave pública, la teoría de la probabilidad y la teoría del caos, que son aplicables a problemas del mundo real.
Resumo:
El inicio del estudio de la proporción de nacimientos de niños y niñas (sex ratio) comienza en el siglo XVIII y ha ocupado a grandes matemáticos. En 1712 John Arbuthnott ya trató de explicar el hecho comprobado de que el número anual de nacimientos de niños superaba al de niñas. Esto supone el primer ejemplo de un contraste de significación y el germen de la técnica de los contrastes de hipótesis estadísticas. El objetivo de este artículo es mostrar estos inicios y reflexionar sobre su utilidad didáctica hoy.
Resumo:
La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.
Resumo:
El ajedrez puede constituir un excelente recurso didáctico en el aula de matemáticas. El presente trabajo trata sobre algunas de las conexiones que se pueden establecer entre estas dos disciplinas, y sobre la posibilidad de plantear problemas matemáticos tomando como soporte el tablero y las piezas de ajedrez. Los contenidos de los problemas son muy variados, manejando diversas cuestiones -algebraicas, combinatorias, geométricas, cálculo de probabilidades, de lógica, etc.-, que resultan especialmente motivadoras por el carácter lúdico y manipulativo que posee el juego de los 64 escaques.
Resumo:
A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.
Resumo:
El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.
Resumo:
Con motivo de la declaración, por la UNESCO, del año 2000 como año mundial de las matemáticas, decidimos en nuestro centro, el IES n.° 3 de San Javier en Murcia, organizar una Semana de las Matemáticas, con la programación de diferentes actividades como actividades interdisciplinares, I Encuentros Matemáticos, Obra de teatro, exposiciones y conferencias.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.
Resumo:
Muchas veces en clase he trazado de extremo a extremo de la pizarra una línea blanca a la que he puesto por nombre R. Este gesto invita a pensar que R, el conjunto de los números reales, se parece mucho a una fila india de puntos muy apretados. Pero los matemáticos sabemos que no es así, pues hay infinitos de diversa índole. El infinito del libro de arena borgiano es numerable, el infinito real no. El continuo real no es ni debe imaginarse como una hilera muy tupida de puntos suspensivos, sino más bien como... ya se verá.
Resumo:
Muchos barceloneses lo recuerdan como profesor, miles de matemáticos del mundo conocen la firma “Jordi Dou (Barcelona)” asociada a soluciones de problemas en las publicaciones más prestigiosas: Monthly, Crux, etc.
Resumo:
Las matemáticas modernas han sido un slogan durante una década. Las matemáticas modernas, interpretadas literalmente matan la educación; interpretadas de acuerdo con su espíritu pueden darle vida. El autor sitúa las matemáticas en sus contextos, histórico, social y de desarrollo intelectual, y la educación matemática en el contexto de la educación en general, así como su desarrollo pasado y presente. En la cúspide de la producción científica, generalmente se reconoce que las matemáticas son una actividad, mucho más que un almacén de conocimientos bien establecido. La filosofía sobre la enseñanza que el autor proclama es que esta idea se aplica a todos los niveles del proceso de aprendizaje. Se analizan estos niveles en numerosos ejemplos. Esta teoría general va seguida de un análisis de varios conceptos y campos matemáticos cruciales.
Resumo:
Según datos del mes de enero ya existen en nuestro país más de dos millones y medio de usurarios de Internet; y no solo eso, cada mes se incorporan más de 100.000 personas nuevas a la Red. Sin duda muchos de ellos son matemáticos.
Resumo:
Los que enseñamos matemáticas sabemos que muchos conceptos matemáticos se nos presenta en los libros de texto, y por tanto enseñamos a nuestros alumnos, totalmente descontextualizados, fuera de sus génesis histórica. No siempre esa descontextualización va en beneficio de la claridad y la comprensión del concepto. La asepsia de mucho libros de texto se despojan a los conceptos de su origen histórico, no siempre es beneficiosa.
Resumo:
En este articulo se incluyen dos actividades que se realizaron en clase al impartir el tema de integración, en ellas se expone la forma mediante la cual dos matemáticos excepcionales, Arquímedes y Fermat, calcularon el valor exacto del área y del volumen de determinadas superficies y sólidos.
Resumo:
Se lleva a cabo un análisis de los lenguajes de programación desde el punto de vista de sus relaciones con el software matemático. Para ello se comienza con una definición bastante flexible de software matemático, para continuar con un análisis metodológico de los lenguajes de programación, estudiando los paradigmas imperativo, funcional, la programación lógica y la orientación a objetos. Por último se realiza un estudio histórico de los lenguajes de programación, así como de los lenguajes de programación más adecuados para la implementación de algoritmos matemáticos.