954 resultados para Matabolism of Proteins


Relevância:

90.00% 90.00%

Publicador:

Resumo:

For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac) as well as to phenol (PhVac). The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05). The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05). The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In obstetrics, premature rupture of the membranes (PROM) is a frequent observation which is responsible for many premature deliveries. PROM is also associated with an increased risk of fetal and maternal infections. Early diagnosis is mandatory in order to decrease such complications. Despite that current biological tests allowing the diagnosis of PROM are both sensitive and specific, contamination of the samples by maternal blood can induce false positive results. Therefore, in order to identify new potential markers of PROM (present only in amniotic blood, and absent in maternal blood), proteomic studies were undertaken on samples collected from six women at terms (pairs of maternal plasma and amniotic fluid) as well as on four samples of amniotic fluid collected from other women at the 17(th) week of gestation. All samples (N = 16) were analyzed by two-dimensional (2-D) high-resolution electrophoresis, followed by sensitive silver staining. The gel images were studied using bioinformatic tools. Analyses were focused on regions corresponding to pI between 4.5 and 7 and to molecular masses between 20 and 50 kDa. In this area, 646 +/- 113 spots were detected, and 27 spots appeared to be present on the gels of amniotic fluid, but were absent on those of maternal plasma. Nine out of these 27 spots were also observed on the gels of the four samples of amniotic fluids collected at the 17(th) week of pregnancy. Five of these 9 spots were unambiguously detected on preparative 2-D gels stained by Coomassie blue, and were identified by mass spectrometry analyses. Three spots corresponded to fragments of plasma proteins, and 2 appeared to be fragments of proteins not known to be present in plasma. These 2 proteins were agrin (SWISS-PROT: O00468) and perlecan (SWISS-PROT: P98160). Our results show that proteomics is a valuable approach to identify new potential biological markers for future PROM diagnosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Alpine swift (Apus melba) forages on insects caught exclusively on the wing, implying that dependent nestlings face acute food shortage in periods of cold and rainy weather. Therefore, there should be strong selection on nestling swifts to evolve physiological strategies to cope with periods of undernutrition. We have investigated intra-individual changes in nestling pectoral muscle and body temperature in response to a 1-week period of inclement weather. The pectoral muscle is the largest reserves of proteins, and nestlings have to devote a large amount of energy in the maintenance of body temperature. The results show that nestling pectoral muscle size and body temperature were significantly reduced during the episode of inclement weather. Assuming that these physiological changes are adaptive, our study suggests that nestling swifts spare energy by a pronounced reduction (up to 18 degrees C) in body temperature and use proteins from the pectoral muscle as a source of extra energy to survive prolonged periods of fasting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stable isotope labels are routinely introduced into proteomes for quantification purposes. Full labeling of cells in varying biological states, followed by sample mixing, fractionation and intensive data acquisition, is used to obtain accurate large-scale quantification of total protein levels. However, biological processes often affect only a small group of proteins for a short time, resulting in changes that are difficult to detect against the total proteome background. An alternative approach could be the targeted analysis of the proteins synthesized in response to a given biological stimulus. Such proteins can be pulse-labeled with a stable isotope by metabolic incorporation of 'heavy' amino acids. In this study we investigated the specific detection and identification of labeled proteins using acquisition methods based on Precursor Ion Scans (PIS) on a triple-quadrupole ion trap mass spectrometer. PIS-based methods were set to detect unique immonium ions originating from labeled peptides. Different labels and methods were tested in standard mixtures to optimize performance. We showed that, in comparison with an untargeted analysis on the same instrument, the approach allowed a several-fold increase in the specificity of detection of labeled proteins over unlabeled ones. The technique was applied to the identification of proteins secreted by human cells into growth media containing bovine serum proteins, allowing the preferential detection of labeled cellular proteins over unlabeled bovine ones. However, compared with untargeted acquisitions on two different instruments, the PIS-based strategy showed some limitations in sensitivity. We discuss possible perspectives of the technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anti-silencing factor 1 (ASF1) is a histone chaperone that contributes to the histone deposition during nucleosome assembly in newly replicated DNA. It is involved in chromatin disassembly, transcription activation and in the cellular response to DNA damage. In Leishmania major the ASF1 gene (LmASF1) is located in chromosome 20 and codes for a protein showing 67% of identity with the Trypanosoma brucei TbASF1a. Compared to orthologous proteins, LmASF1 conserves the main residues relevant for its various biological functions. To study ASF1 in Leishmania we generated a mutant overexpressing LmASF1 in L. major. We observed that the excess of LmASF1 impaired promastigotes growth rates and had no impact on cell cycle progress. Differently from yeast, ASF1 overproduction in Leishmania did not affect expression levels of genes located on telomeres, but led to an upregulation of proteins involved in chromatin remodelling and physiological stress, such as heat shock proteins, oxidoreductase activity and proteolysis. In addition, we observed that LmASF1 mutant is more susceptible to the DNA damaging agent, methyl methane sulphonate, than the control line. Therefore, our study suggests that ASF1 from Leishmania pertains to the chromatin remodelling machinery of the parasite and acts on its response to DNA damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lutzomyia longipalpis is the most important vector of visceral leishmaniasis in Brazil. When female sandflies feed on blood, a peritrophic matrix (PM) is formed around the blood bolus. The PM is secreted by midgut cells and composed of proteins, glycoproteins and chitin microfibrils. The PM functions as both a physical barrier against pathogens present in the food bolus and blood meal digestion regulator. Previous studies of mosquitoes and sandflies have shown that the absence of a PM, resulting from adding an exogenous chitinase to the blood meal, accelerates digestion. In the present study, we analysed biological factors associated with the presence of a PM in L. longipalpis females. Insects fed blood containing chitinase (BCC) accelerated egg-laying relative to a control group fed blood without chitinase. However, in the BCC-fed insects, the number of females that died without laying eggs was higher and the number of eggs laid per female was lower. The eggs in both groups were viable and generated adults. Based on these data, we suggest that the absence of a PM accelerates nutrient acquisition, which results in premature egg production and oviposition; however, the absence of a PM reduces the total number of eggs laid per female. Reduced fecundity in the absence of a PM may be due to inefficient nutrient conversion or the loss of the protective role of the PM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUME Les gènes des PPARs jouent des rôles importants dans la régulation du métabolisme énergétique, lipidique et glucidique. Le présent travail, caractérise et analyse les défauts placentaires responsables de la mort embryonnaire des souris mutantes pour PPARβ et pour PPARγ, entre le jour E9.5 et E10.5. Les placentas issus d'embryons PPARP présentent un sévère retard de croissance, alors que les placentas mutants PPARγ montrent de graves défauts vasculaires. Nous montrons que les placentas issus d'embryons PPARβ-/-, au jour E9.5 présentent une réduction prononcée de la couche de cellules géantes, associée à une diminution des niveaux de protéines exprimées par les cellules géantes, tel que le placenta lactogène-I et la « proliferin ». Par ailleurs, nous montrons que le traitement d'un lignée trophoblastique par un ligand spécifique de PPARP augmente considérablement leur différentiation en cellules géantes. Cette différentiation dépendante de la voie de signalisation P13-kinase, s'accompagne d'une élévation de l'expression de l'ADRP, une protéine de structure associée aux vésicules lipidiques. Ainsi nous démontrons que PPAR5 est un régulateur majeur de la différentiation des cellules géantes, lesquelles sont primordiales aussi bien pour l'établissement de la structure placentaire, que pour la fonction endocrine. Par contre, les placentas PPARγ-/- présentent un défaut de vascularisation. Le niveau d'une protéine anti-angiogénique, la « proliferin-related protein », est très basse et ne peut pas contre-balancer l'élévation normale de la protéine pro-angiogénique « proliferin ». La formation des vaisseaux se trouve alors altérée. Ainsi, PPARγ constitue un régulateur majeur de l'activité anti-angiogénique. En conclusion, ce travail fournit de nouveaux éléments sur le rôle complémentaires de PPARβet PPARγ dans les événements complexes qui régissent le développement placentaire. SUMMARY Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors involved in energy homeostasis and growth. Herein, we characterize the placental defects that cause embryonic lethality around E9.5/E10.5 in PPARβ- and in PPARγ-deficient mouse lines. Most but not all PPARβ-null mutants die around E9.5/E10.5 with severe growth retardation. The placentas from PPARβ-/- embryos at E9.5 exhibit a strongly reduced giant cell layer, associated with reduced levels of proteins expressed by giant cells such as Placental lactogen-I and Proliferin. Ectopic treatment of a rat trophoblast cell line with PPARβ ligand markedly accelerated PI3 kinase-dependent giant cell differentiation. In addition, we demonstrate that ADRP, a pen-related lipid droplet-bound protein, is up-regulated by PPARβ in differentiated Rcho-1 cells. These results indicate that PPARβ is a crucial regulator of the differentiation secondary giant cells, which play a major role in the establishment of the placental structure as well as an important endocrine function. In contrast, the main alteration of the PPARγ-null placentas concerns the vasculogenesis. We show that in these placentas, the level of the anti-angiogenic proliferin-related protein is very low, and cannot balance the normal elevation of the pro-angiogenic proliferin expression, leading to the defective placental vessel formation. Consistently, the dramatic increase of PPARγ expression in late stage of gestation in wild-type mice is likely a major regulator of the anti-angiogenic activity, particularly important at the end of the pregnancy. This work emphasizes the important and complementary roles of PPARβ and PPARγ in mouse placental development and provides new tools for understanding the complex regulatory events that governs placental development and function. Understanding the function of PPARβ and PPARγ are of crucial interest with respect to human placental development and associated pathologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular mechanisms linking diet, obesity, and type 2 diabetes are still poorly understood. In a recent paper, Ohtsubo et al. (2011) show that high lipid levels induce nuclear exclusion of Foxa2 and HNF1α in β cells, leading to impaired expression and glycosylation of proteins controlling glucose-stimulated insulin secretion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase-independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Les mécanismes qui coordonnent la progression du cycle cellulaire lors de la méiose avec les événements du développement embryonnaire précoce, y compris la formation des axes de polarité embryonnaire, sont peu compris. Dans le zygote du vers Caenorhabditis elegans, les premiers signes de polarité Antéro-Postérieur (A-P) embryonnaire apparaissent après que la méiose soit terminée. La nature des protéines et des mécanismes moléculaires qui cassent la symétrie du zygote n'est pas connue. Nous démontrons que zyg-11 et cul-2 promeuvent la transition métaphase - anaphase et la sortie de la phase M lors de la seconde division méiotique. Nos résultats indiquent que ZYG-11 agit comme unité recrutant le substrat d'une ligase E3 comprennant CUL-2. Nos résultats montrent aussi que le délai de sortie de la phase M dépend de l'accumulation de la Cyclin B, CYB-3. Nous démontrons que dans des embryons zyg-11(RNAi) ou cul-2(RNAi), une polarité inversée est établie lors du délai de méiosis II. Enfin nous montrons que les défauts de cycle cellulaire et ceux de polarité peuvent être séparés. De plus, nous faisons apparaitre que l'établissement d'une polarité inversée pendant le délai de méiose II des embryons zyg-11(RNAi), comme l'établissement de la A-P polarité des embryons sauvage ne semblent pas requérir les microtubules. Nous montrons également les premiers résultats d'un crible deux hybrides ainsi qu'un crible génomique qui vise à identifier des gènes dont l'inactivation augmente ou supprime les défauts de mutants pour le gène zyg-11, afin d'identifier les gènes qui intéragissent avec ZYG-11 pour assumer ses deux fonctions séparables. Par conséquent, nos trouvailles suggèrent un modèle selon lequel ZYG-11 est une sous-unité qui recrute les substrats d'une ligase E3 basée sur CUL-2 qui promeut la progression du cycle cellulaire et empêche l'établissement de la polarité pendant la méiose II, et où le centrosome agit comme la clé qui polarise l'embryon à la fin de la méiose. Summary The mechanisms that couple meiotic cell cycle progression to subsequent developmental events, including specification of embryonic axes, are poorly understood. In the one cell stage embryos of Caenorhabditis elegans, the first signs of Antero-Posterior (A-P) polarity appear after meiosis completion. A centrosome ¬derived component breaks symmetry of the embryo, but the molecular nature of this polarity signal is not known. We established that zyg-11 and cul-2 promote the metaphase to anaphase transition and M phase exit at meiosis II. Our results indicate that ZYG-11 acts as a substrate recruitment subunit of a CUL-2-based E3 ligase. Moreover, we find that the delayed meiosis II exit of embryos lacking zyg-11 is caused by accumulation of the B-type cyclin, CYB-3. We demonstrate that inverted A-P polarity is established during the meiosis II delay in zyg-11(RNAi) and cul¬2(RNAi) embryos. Importantly, we demonstrate that the polarity defects following zyg-11 or cul-2 inactivation can be uncoupled from the cell cycle defects. Furthermore, we found that microtubules appear dispensable for inverted polarity during the meiosis II delay in zyg-11(RNAi) embryos, as well as for A-P polarity during the first mitotic cell cycle in wild-type embryos. We also show the initial results from a comprehensive yeast two hybrid, as well as an RNAi-based functional genomic enhancer and suppressor screen, that may lead to identification of proteins that interact with zyg-11 to ensure the two functions. Our findings suggest a model in which ZYG-11 is a substrate recruitment subunit of an CUL-2-based E3 ligase that promotes cell cycle progression and prevents polarity establishment during meiosis II, and in which the centrosome acts as a cue to polarize the embryo along the AP axis after exit from the meiotic cell cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of protein function appears to involve alternating periods of conservative evolution and of relatively rapid change. Evidence for such episodic evolution, consistent with some theoretical expectations, comes from the application of increasingly sophisticated models of evolution to large sequence datasets. We present here some of the recent methods to detect functional shifts, using amino acid or codon models. Both provide evidence for punctual shifts in patterns of amino acid conservation, including the fixation of key changes by positive selection. Although a link to gene duplication, a presumed source of functional changes, has been difficult to establish, this episodic model appears to apply to a wide variety of proteins and organisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Malnutrition affects 40-50% of patients with ear, nose and throat (ENT) cancer. The aim of this study was to assess changes induced by a specific nutritional supplement enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes, as compared with a standard nutritional supplement, on markers of inflammation, oxidative stress and metabolic status of ENT cancer patients undergoing radiotherapy (RT). Fourteen days after starting RT, 26 patients were randomly allocated to one of two groups, 13 supplemented with Prosure, an oncologic formula enriched with n-3 polyunsaturated fatty acids, fiber and greater amounts of proteins and electrolytes (specific supplement), and 13 supplemented with Standard-Isosource (standard supplement). Patients were evaluated before RT, and 14, 28 and 90 days after starting RT. The results showed that there were no significant differences between the groups, but greater changes were observed in the standard supplement group, such as a decline in body mass index (BMI), reductions in hematocrit, erythrocyte, eosinophil and albumin levels, and a rise in creatinine and urea levels. We concluded that metabolic, inflammatory and oxidative stress parameters were altered during RT, and began to normalize at the end of the study. Patients supplemented with Prosure showed an earlier normalization of these parameters, with more favorable changes in oxidative stress markers and a more balanced evolution, although the difference was not significant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allergic reactions towards β-lactam antibiotics pose an important clinical problem. The ability of small molecules, such as a β-lactams, to bind covalently to proteins, in a process known as haptenation, is considered necessary for induction of a specific immunological response. Identification of the proteins modified by β-lactams and elucidation of the relevance of this process in allergic reactions requires sensitive tools. Here we describe the preparation and characterization of a biotinylated amoxicillin analog (AX-B) as a tool for the study of protein haptenation by amoxicillin (AX). AX-B, obtained by the inclusion of a biotin moiety at the lateral chain of AX, showed a chemical reactivity identical to AX. Covalent modification of proteins by AX-B was reduced by excess AX and vice versa, suggesting competition for binding to the same targets. From an immunological point of view, AX and AX-B behaved similarly in RAST inhibition studies with sera of patients with non-selective allergy towards β-lactams, whereas, as expected, competition by AX-B was poorer with sera of AX-selective patients, which recognize AX lateral chain. Use of AX-B followed by biotin detection allowed the observation of human serum albumin (HSA) modification by concentrations 100-fold lower that when using AX followed by immunological detection. Incubation of human serum with AX-B led to the haptenation of all of the previously identified major AX targets. In addition, some new targets could be detected. Interestingly, AX-B allowed the detection of intracellular protein adducts, which showed a cell type-specific pattern. This opens the possibility of following the formation and fate of AX-B adducts in cells. Thus, AX-B may constitute a valuable tool for the identification of AX targets with high sensitivity as well as for the elucidation of the mechanisms involved in allergy towards β-lactams.