971 resultados para Jacobi-Dunkl Expansion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denote by x(nk)(alpha, beta), k = 1...., n, the zeros of the Jacobi polynornial P-n((alpha,beta)) (x). It is well known that x(nk)(alpha, beta) are increasing functions of beta and decreasing functions of alpha. In this paper we investigate the question of how fast the functions 1 - x(nk)(alpha, beta) decrease as beta increases. We prove that the products t(nk)(alpha, beta) := f(n)(alpha, beta) (1 - x(nk)(alpha, beta), where f(n)(alpha, beta) = 2n(2) + 2n(alpha + beta + 1) + (alpha + 1)(beta + 1) are already increasing functions of beta and that, for any fixed alpha > - 1, f(n)(alpha, beta) is the asymptotically extremal, with respect to n, function of beta that forces the products t(nk)(alpha, beta) to increase. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denote by x(n,k)(alpha, beta) and x(n,k) (lambda) = x(n,k) (lambda - 1/2, lambda - 1/2) the zeros, in decreasing order, of the Jacobi polynomial P-n((alpha, beta))(x) and of the ultraspherical (Gegenbauer) polynomial C-n(lambda)(x), respectively. The monotonicity of x(n,k)(alpha, beta) as functions of a and beta, alpha, beta > - 1, is investigated. Necessary conditions such that the zeros of P-n((a, b)) (x) are smaller (greater) than the zeros of P-n((alpha, beta))(x) are provided. A. Markov proved that x(n,k) (a, b) < x(n,k)(α, β) (x(n,k)(a, b) > x(n,k)(alpha, beta)) for every n is an element of N and each k, 1 less than or equal to k less than or equal to n if a > alpha and b < β (a < alpha and b > beta). We prove the converse statement of Markov's theorem. The question of how large the function could be such that the products f(n)(lambda) x(n,k)(lambda), k = 1,..., [n/2] are increasing functions of lambda, for lambda > - 1/2, is also discussed. Elbert and Siafarikas proved that f(n)(lambda) = (lambda + (2n(2) + 1)/ (4n + 2))(1/2) obeys this property. We establish the sharpness of their result. (C) 2002 Elsevier B.V. (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the Teleparallel Equivalent of General Relativity (TEGR) from the point of view of Hamilton-Jacobi approach for singular systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The back-to-back correlations (BBC) of particle-antiparticle pairs, signalling in-medium mass modification, are studied in a finite size thermalized medium. The width of BBC function is explicitly evaluated in the case of a nonrelativistic spherically symmetric expanding fireball. The effect of the flow is to reduce the BBC signal as compared to the case of non flow. Nevertheless, a significant signal survives finite-time emission plus expansion effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We intend to analyse the constraint structure of Teleparallelism employing the Hamilton-Jacobi formalism for singular systems. This study is conducted without using an ADM 3+1 decomposition and without fixing time gauge condition. It can be verified that the field equations constitute an integrable system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present calculations for a nonplanar double box with four massless, massive external, and internal legs propagators. The results are expressed for arbitrary exponents of propagators and dimension in terms of Lauricella's hypergeometric functions of three variables and hypergeometric-like multiple series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the expansion of a Bose-Einstein condensate trapped in a combined optical-lattice and axially-symmetric harmonic potential using the numerical solution of the mean-field Gross-Pitaevskii equation. First, we consider the expansion of such a condensate under the action of the optical-lattice potential alone. In this case the result of numerical simulation for the axial and radial sizes during expansion is in agreement with two experiments by Morsch et al (2002 Phys. Rev. A 66 021601(R) and 2003 Laser Phys. 13 594). Finally, we consider the expansion under the action of the harmonic potential alone. In this case the oscillation, and the disappearance and revival of the resultant interference pattern is in agreement with the experiment by Muller et al (2003 J. Opt. B: Quantum Semiclass. Opt. 5 S38).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a formal generalization of the Hamilton-Jacobi formalism, recently developed For singular systems, to include the case of Lagrangians containing variables which are elements of Berezin algebra. We derive the Hamilton-Jacobi equation for such systems, analyzing the singular case in order to obtain the equations of motion as total differential equations and study the integrability conditions for such equations. An example is solved using both Hamilton-Jacobi and Dirac's Hamiltonian formalisms and the results are compared. (C) 1998 Academic Press.