997 resultados para Isotopic oxygen
Resumo:
Glacial/interglacial changes in Southern Ocean's air-sea gas exchange have been considered as important mechanisms contributing to the glacial/interglacial variability in atmospheric CO2. Hence, understanding past variability in Southern Ocean intermediate- to deep-water chemistry and circulation is fundamental to constrain the role of these processes on modulating glacial/interglacial changes in the global carbon cycle. Our study focused on the glacial/interglacial variability in the vertical extent of southwest Pacific Antarctic Intermediate Water (AAIW). We compared carbon and oxygen isotope records from epibenthic foraminifera of sediment cores bathed in modern AAIW and Upper Circumpolar Deep Water (UCDW; 943 - 2066 m water depth) to monitor changes in water mass circulation spanning the past 350,000 years. We propose that pronounced freshwater input by melting sea ice into the glacial AAIW significantly hampered the downward expansion of southwest Pacific AAIW, consistent with climate model results for the Last Glacial Maximum. This process led to a pronounced upward displacement of the AAIW-UCDW interface during colder climate conditions and therefore to an expansion of the glacial carbon pool.
Resumo:
Pore fluids from two ODP sites at Eastern Mediterranean mud volcanoes have been analyzed for their Cl concentration and their delta18O and deltaD isotopic composition. The Cl data span a wide range of concentrations, from extremely depleted with respect to seawater (as low as 60 mM) at the crest of Milano dome (site 970) to strongly enriched (up to 5.4 M) at Napoli dome (site 971). Chloride enrichment is known to be due to dissolving Messinian evaporites, whereas the source of the low-Cl fluid is deduced from stable isotope data presented here. The isotopic composition of the endmember fluid is found to be +10? for delta18O and -32? for deltaD for low- as well as for high-Cl waters. From this signature it can be concluded that neither gas hydrates nor meteoric water play a significant role in the freshening of the pore water. Several other processes altering the delta18O/deltaD composition of pore waters are discussed and considered to be of only negligible influence. The process characterizing the isotopic composition of the fluid is found to be clay mineral dehydration (mainly smectite-illite transformation), corresponding to a depth range of 3.5-7 km and an elevated temperature of about 120-165°C. A quantitative estimate shows that this reaction is capable of producing the observed extreme Cl depletion.
Resumo:
During the cruises No 17 and 22 of the German research vessel "Meteor", 45 water samples were taken at 4 stations in the central part of the Mediterranean Sea. Mass spectrometrical analyses showed that systematic, but time variable changes of the oxygen isotope ratios occur. Deep water samples (T> 500 m) have a ± constant isotopic composition of d18O = +1.79? (SMOW) and a Chlorinity of 21.399?. These data are discussed with respect to paleotemperature determinations.
Resumo:
Authigenic carbonates, principally calcium-rich dolomites, with extremely variable isotopic compositions were recovered in organic-rich marine sediments during Leg 63 drilling off southern California and Baja California. These carbonates occur as thin layers in fine-grained, diatomaceous sediments and siliceous rocks, mostly deposited during the Neogene. A combination of textural, geochemical, and isotopic evidence indicates these dolomites formed as cements and precipitates in shallow subsurface zones of high alkalinity spawned by abundant CO2 and methane production during progressive microbial decay of organic matter. Depths and approximate temperatures of formation estimated from oxygen isotopes are 87 to 658 meters and 10°C to 50°C, respectively. Within any sedimentary section, dolomites may form simultaneously at several depths or at different times within the same interval. Highly variable carbon isotopes (-30 to +16 per mil) reflect the isotopic reservoir in which the carbonates formed. Oxidation of organic matter through microbial reduction of sulfate at shallow depths favors light-carbon carbonates such as those at Sites 468 and 471; heavy-carbon carbonates at Site 467 most likely formed below this zone where HC**12O3**- is preferentially removed by reduction of CO2 to methane during methanogenesis. An important controlling factor is the sedimentation rate, which dictates both the preservation of organic matter on the sea floor and depth distribution of subsurface zones of organic-matter decay.
Resumo:
Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework (delta 18Of) that extend from +18.7? to +32.8? (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25ºC to 40ºC. The resulting fractionation factors of 1.032 at 25ºC and 1.027 at 40ºC are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17ºC to 29ºC in Barbados Ridge sediments and at 33ºC to 62ºC in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite delta18Of values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17-20ºC) or under closed system conditions.
Resumo:
Hydraulic piston coring at DSDP Site 548, on the upper continental slope southwest of Ireland, recovered a nearly complete Pliocene section spanning 103 m of sediment. The sediments are greenish gray carbonate-rich hemipelagites containing abundant nannofossils and foraminifers. Grain-size analysis demonstrates that the texture of the section is fairly constant, with most of the variation occurring in 63- to 32-µm and < 2-µm fractions. Previous research has shown that the middle-to-late Pliocene transition in the North Atlantic was marked by the appearance of the planktonic foraminiferal species Globorotalia inflata and by the first occurrence of significant quantities of ice-rafted sediment grains in deep-sea sediments. The latter is taken to represent the first important development of Northern Hemisphere glaciation. The first appearance of G. inflata is carefully documented for Site 548 and is demonstrated to be an evolutionary datum at this site, rather than an ecologically controlled first appearance. Surface ocean conditions represented in the sediment section spanning the appearance of G. inflata were strongly cyclic, resulting in large periodic changes in the abundances of Globorotalia puncticulata and N. acostaensis. The benthic foraminiferal population was studied in detail over the middle-to-upper Pliocene transition to establish the nature and behavior of the intermediate-depth water mass in the northeastern Atlantic at the time of ice-sheet growth in the Northern Hemisphere. This water mass is presently warm and saline, having its source in the Mediterranean Sea. The benthic data show that the intermediate-depth water mass was undergoing a series of progressive changes over the interval including the first appearance of G. inflata. These changes are particularly reflected in the relative abundances of Globocassidulina subglobosa (Brady), Uvigerina, and Ehrenbergina. Also, the mean size of individuals in the G. subglobosa populations shows systematic variation, indicating changing intermediate-depth water properties. Oxygen-isotope analyses show that the intermediate-depth water mass was cold during the middle-to-late Pliocene transition. This interpretation is supported by the relative abundances of benthic foraminiferal species. Hence, the intermediate-depth northeastern Atlantic water mass of the middle to late Pliocene was considerably different from the intermediate-depth water mass of the present.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.
Resumo:
We measured oxygen-isotope compositions of 16 siliceous rocks from Deep Sea Drilling Project Sites 463, 464, 465, and 466 (Leg 62). Samples are from deposits that range in age from about 40 to 103 m.y. and that occur at sub-bottom depths of 9 to 461 meters. Mean d18O values range from 28.4 to 36.8 per mil and 36.0 ± 0.3 per mil for quartz-rich and opal-CTrich rocks, respectively. d18O values in chert decrease with increasing sub-bottom depth; the slope of the d18O/depth curve is less steep for Site 464 than for the other sites which indicates that chert at Site 464 formed at higher temperatures than chert at Sites 463, 465, and 466. Temperatures of formation of cherts were 7 to 42°C, using the silica-water fractionation factor of Knauth and Epstein (1976), or 19 to 56°C, using the equation of Clayton et al. (1972). Temperatures in the sediment where the cherts now occur are lower than their isotopically determined temperatures of formation, which means that the cherts record an earlier history when temperatures in the sediment section were greater. Estimated sediment temperatures when the cherts formed are comparable to, but generally slightly lower than, those calculated from Knauth and Epstein's equation. The isotopic composition of cherts is more closely related to environment of formation (diagenetic environment) or paleogeothermal gradients, than to paleoclimates (bottom-water temperatures). Opal-CT-rich rocks may better record paleo-bottom-water temperature. In Leg 62 cherts, better crystallinity of quartz corresponds to lower d18O values; this implies progressively higher temperatures of equilibration between quartz and water during maturation of quartz. The interrelationship of d18O and crystallinity is noted also in continental-margin deposits such as the Monterey Formation - but for higher temperatures. The apparent temperature difference between open-ocean and continental-margin deposits can be explained by the dominant control of temperature on silica transformation in the rapidly deposited continental-margin deposits, whereas time, as well as temperature, has a strong influence on the transformations in open-ocean deposits. Comparisons between the chemistry and d18O values of cherts reveal two apparent trends: both boron and SiO2 increase as d18O increases. However, the correspondence between SiO2 and d18O is only apparent, because the two cherts lowest in SiO2 are also the most deeply buried, so the trend actually reflects depth of burial. The correspondence between boron and d18O supports the conclusion that boron is incorporated in the quartz crystal structure during precipitation
Resumo:
DSDP Hole 504B was drilled into 6 Ma crust, about 200 km south of the Costa Rica Rift, Galapagos Spreading Center, penetrating 1.35 km into a section that can be divided into four zones-Zone I: oxic submarine weathering; Zone II: anoxic alteration; Zones III and IV: hydrothermal alteration to greenschist facies. In Zone III there is intense veining of pillow basalts. Zone IV consists of altered sheeted dikes. Isotopic geochemical signatures in relation to the alteration zones are recorded in Hole 504B, as follows: Zone Depth(m) Average87Sr/86Sr Average delta18O (?) Average deltaD (?) I 275-550 0.7032 7.3 -63 II 550-890 0.7029 6.5 -45 III 890-1050 0.7035 5.6 -31 IV 1050-1350 0.7032 5.5 -36 Alteration temperatures are as low as 10°C in Zones I and II based on oxygen isotope fractionation. Strontium isotopic data indicate that a circulation of seawater is much more restricted in Zone II than in Zone I. Fluid inclusion measurements of vein quartz indicate the alteration temperature was mainly 300 +/- 20°C in Zones III and IV, which is consistent with secondary mineral assemblages. The strontium, oxygen, and hydrogen isotopic compositions of hydrothermal fluids which were responsible for the greenschist facies alteration in Zones III and IV are estimated to be 0.7037, 2?, and 3?, respectively. Strontium and oxygen isotope data indicate that completely altered portions of greenstones and vein minerals were in equilibrium with modified seawater under low water/rock ratios (in weight) of about 1.6. This value is close to that of the end-member hydrothermal fluids issuing at 21°N EPR. Basement rocks are not completely hydrothermally altered. About 32% of the greenstones in Zones III and IV have escaped alteration. Thus 1 g of fresh basalt including the 32% unaltered portion are required in order to make 1 g of end-member solution from fresh seawater in water-rock reactions.
Resumo:
Talus deposits recovered from Site 536 show evidence of aragonite dissolution, secondary porosity development, and calcite cementation. Although freshwater diagenesis could account for the petrographic features of the altered talus deposits, it does not uniquely account for isotopic or trace-element characteristics. Also, the hydrologic setting required for freshwater alteration is not easily demonstrated for the Campeche Bank. A mixing-zone model does not account for the available trace-element data, but does require somewhat less drastic assumptions about the size of the freshwater lens. Although a seawater (bottom-water) alteration model requires no hydrologic difficulties, unusual circumstances are required to account for the geochemical characteristics of the talus deposits using this model.
Resumo:
Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.
Resumo:
Results of a study of phosphates collected on Pacific Ocean seamounts using some physicochemical methods are described. Particular attention is paid to isotopic studies of both phosphates and their accompanying features. Oxygen isotopic compositions in phosphates of different genetic types were compared. Possible hydrothermal origin of phosphates is considered, and probable conditions of their formation are determined.
Resumo:
Recent deep-ocean exploration has revealed unexpectedly widespread and diverse coral ecosystems in deep water on continental shelves, slopes, seamounts, and ridge systems around the world. Origin and growth history of these cold-water coral mounds are poorly known, owing to a lack of complete stratigraphic sections through them. Here we show high-resolution oxygen isotope records of planktic foraminifers from the base to the top of Challenger Mound, southwest of Ireland, which was drilled during Integrated Ocean Drilling Program Expedition 307. Challenger Mound began to grow during isotope stage 92 (2.24 million years ago (Ma)), immediately after the onset of Northern Hemisphere glaciation and the initiation of modern stratification in the northeast Atlantic. Mound initiation was likely due to reintroduction of Mediterranean Outflow Water (MOW) and ensuing development of a density gradient with overlying northeastern Atlantic water (NEAW), where organic matter was prone to be stagnated and fueled the coral ecosystem. Coral growth continued for 11 glacial-interglacial cycles until isotopic stage 72 (1.82 Ma) with glacial siliciclastic input from the continental margin. After a long hiatus that separates the lower mound and the upper mound, coral growth restored for a short time in isotope stages 19-18 (0.8-0.7 Ma) in which sediments were either eroded or not deposited during a full glacial stage. The development pattern of the water mass interface between MOW and NEAW might have changed, because of the fluctuations of the MOW production which is responsible for the amplitude in ice volume oscillations from the low-amplitude 41 ka cycles for the lower mound to the high-amplitude 100 ka cycles for the upper mound. The average sedimentation and CaCO3 production rates of the lower mound were evaluated 27 cm/ka and 31.1 g/cm2/ka, respectively.