975 resultados para HPLC DETERMINATION
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon (Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a (60)Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Most researches that have been done until today about the beneficial effects of hariparoha (Pothomorphe umbellata L. Miq) have been done with root extract of this species, but the use in large scale would compromise the sustainable exploration of this natutral resource. In this sense, the utilization of pariparoha leaves, substituting the roots, in the cosmetic industry does not put in risk the existence of the species. In this work the concentration of 4-nerolidyl-cathecol (4-NC) in leaf extract was determined by the analytical methodology validated in our laboratory. The concentration of 4-NC in leaf extract was around 30% less than that of root extract, obtained in the same way. Concerning the study of the photostability of a leaves extract solution containing 4-NC did not demonstrate meaningful alterations in the spectrometry, profile after 2 hours of exposure under UVB radiation, showing its stability under this conditions. Metalloproteinases (MMPs) cure endopeptidases that are zinc-dependent, involved in remodeling extracellular matrix (ECM), that are important in the appearance of typical photoaging wrinkles. In this work the capacity of leaf extract of P. umbellata to inhibit MMP-2 and 9 activities of hairless mouse skin in vitro by zymography gel was also evalutated. The leaf extract (0,1 mg/mL) inhibit in 80% activity of this enzymes, according to the densitometric zymography evaluation.
Resumo:
Paraquat is a broad-spectrum contact herbicide that has been encountered worldwide in several cases of accidental, homicidal, and suicidal poisonings. The pulmonary toxicity of this compound is related to the depletion of NADPH in the pneumocytes, which is continuously consumed by the reduction/oxidation of paraquat and reductase enzyme systems in the presence of O(2) (redox cycling). Based on this mechanism, an enzymatic-spectrophotometric method was developed for the determination of paraquat in urine samples. The velocity of NADPH consumption was monitored at 340 nm, every 10 s during 15 min. The velocity of NADPH oxidation correlated with the paraquat levels found in samples. The enzymatic-spectrophotometric method showed to be sensitive, making possible the detection of paraquat in urine samples at concentrations as low as 0.05 mg/L.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A novel microemulsion electrokinetic capillary chromatography (MEEKC) method has been developed which separates a range of nine steroids. A microemulsion containing ethyl acetate, butan-1-ol, sodium dodecyl sulfate, 15% (v/v) acetonitrile and 12 mmol L(-1) sodium tetraborate aqueous buffer at pH 9.2 was used with direct UV detection at 200 nm. The method was validated for the determination of 17 beta-estradiol content, a hormone steroid, in transdermal patches. Adequate sensitivity (DL = 0.88 mu g mL(-1); QL = 2.65 mu g mL(-1)) without interference from sample excipients was obtained. 17 beta-Estradiol migrates in approximately 5.4 min. Estrone was used as internal standard and acceptable precision (< 1.2% RSD), linearity (r = 0.9996; range from 40.0 to 60.0 mu g mL(-1)), and recovery (100.4 +/- A 0.9% at three concentration levels) were obtained. The principal advantage of the method is that it is rapid and avoids the need of time consuming and expensive sample pre-treatment steps.
Resumo:
Microemulsion electrokinetic capillary chromatography has been successfully applied to the separation and determination of water-soluble vitamins (thiamine hydrochloride, riboflavin, niacin, pyridoxine hydrochloride, folic acid, cobalamin, ascorbic acid) and a fat-soluble vitamin (alpha-tocopherol acetate). The optimal microemulsion buffer contained sodium dodecylsulfate (SDS) as surfactant, butan-1-ol as the co-surfactant, ethyl acetate as the oil and pH 9.2 tetraborate buffer, modified with 15% (v/v) 2-propanol. UV detection at 214 nm gave adequate sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins were baseline separated in less than 7 min. Analytical curves of peak area versus concentration presented coefficients of determination (R (2) ) > 0.99, acceptable limits of quantification between 8.40 and 16.23 mu g mL(-1) were obtained. Vitamin levels in liquid formulation were quantified with intra-day precision better than 0.99% RSD for migration time and 1.19% RSD for peak area ratio. Recoveries ranged between 98.7 and 101.7%. The method was considered appropriate for rapid and routine analysis.
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.
Resumo:
This study describes an accurate, sensitive, and specific chromatographic method for the simultaneous quantitative determination of lamivudine and zidovudine in human blood plasma, using stavudine as an internal standard. The chromatographic separation was performed using a C8 column (150 x 4.6 mm, 5 mu m), and ultraviolet absorbency detection at 270 nm with gradient elution. Two mobile phases were used. Phase A contained 10 mM potassium phosphate and 3% acetonitrile, whereas Phase B contained methanol. A linear gradient was used with a variability of A-B phase proportion from 98-2% to 72-28%, respectively. The drug extraction was performed with two 4 mL aliquots of ethyl acetate.
Resumo:
The purpose of this study was to evaluate bioequivalence of two commercial 8 mg tablet formulations of ondansetrona available ill the Brazilian market. In this study, a simple, rapid, sensitive and selective liquid chromarography-tandem mass spectrometry method is described for the determination of ondansetron in human plasma samples. The method was validated over a concentration range of 2.5-60 ng/ml and used in a bioequivalence trial between orally disintegrating and conventional tablet ondansetron formulations, to assess its usefulness in this kind of Study. Vonau flash (R) (Biolab Sanus Farmaceutica, Brazil, as test formulations) and Zofran (R) (GlaxoSmithKline, Brazil, as reference formulation) were evaluated following a single 8 mg close to 23 healthy volunteers of both genders. The dose was administered after an overnight fast according to a two-way crossover design. Bioequivalence between the products was determinated by Calculating 90% confidence interval (90% CI) for the ratio of C(max), AUC(0-t) and AUC(0-(sic)) values for the test and reference products, using logarithmically transformed data. The 90% confidence interval for the ratio of C(max) (87.5-103.8%), AUC(0-t) (89.3-107.2%) and AUC(0--(sic)) (89.7-106.0%) values for the test and reference products is Within the 80-125% interval, proposed by FDA, EMEA and ANVISA. It was concluded that two ondansetron formulations are bioequivalent ill their rate and extent of absorption. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A nuclear magnetic resonance (NMR) spectroscopic method was validated for the quantitative determination of dimethylaminoethanol (DMAE) in cosmetic formulations. The linearity in the range from 0.5000 to 1.5000 g (DMAE salt/mass maleic acid) presents a correlation coefficient > 0.99 for all DMAE salts. The repeatability (intraday), expressed as relative standard deviation, ranged from 1.08 to 1.44% for samples and 1.31 to 1.88% for raw materials. The detection limit and quantitation limit were 0.0017 and 0.0051 g for DMAE, 0.0018 and 0.0054 g for DMAE bitartrate, and 0.0023 and 0.0071 g for DMAE acetamidobenzoate, respectively. The proposed method is simple, precise, and accurate and can be used in the quality control of raw materials and cosmetic gels containing these compounds as active substances.
Resumo:
A simple spectrophotometric method has been developed,for the determination of fenoterol hydrobromide (FH) in tablets, drops and syrup, as the only active principle and associated with ibuprofen. The method is based on the oxidative coupling reaction of the FH with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ceric sulphate as oxidant reagent. The mixture of the drug, MBTH and ceric sulfate, in acid medium, produces a red brown color compound, with absorption maximum at 475 nm. The calibration curve was linear over a concentration range from 3.0 to 12.0 mu g/mL, with correlation coefficient of 0.9998. The different experimental parameters affecting the development and stability of the color compound were carefully studied and optimized. The method was applied successfully to assay FH in dosage forms and simulated samples. The coefficient of variation was from 0.25 % to 0.82 % and average recoveries of the standard from 98 % to 102 %. The excipients (tablets and drops) did not interfere in the analysis and the results showed that method can be used for determination of the FH isolated or associated with ibuprofen with precision, accuracy and specificity. In case of syrup, the interference in the analysis suggests a possible reaction between vehicle components with MBTH.
Resumo:
A simple, rapid, selective and sensitive analytical method by HPLC with UV detection was developed for the quantification of carbamazepine, phenobarbital and phenytoin in only 0.2 mL of plasma. A C18 column (150 x 3.9 mm, 4 micra) using a binary mobile phase consisting of water and acetonitrile (70:30, v/v) at a flow rate of 0.5 mL/min were proposed. Validation of the analytical method showed a good linearity (0.3 to 20.0 mg/L for CBZ, 0.9 to 60.0 mg/L for PB and 0.6 to 40.0 mg/L for PHT), high sensitivity (LOQ: 0.3, 0.9 and 0.6 mg/L respectively). The method was applied for drug monitoring of antiepileptic drugs (AED) in 27 patients with epilepsy under polytherapy.