965 resultados para Genomic Imprinting
Resumo:
Apple consumption is highly recomended for a healthy diet and is the most important fruit produced in temperate climate regions. Unfortunately, it is also one of the fruit that most ofthen provoks allergy in atopic patients and the only treatment available up to date for these apple allergic patients is the avoidance. Apple allergy is due to the presence of four major classes of allergens: Mal d 1 (PR-10/Bet v 1-like proteins), Mal d 2 (Thaumatine-like proteins), Mal d 3 (Lipid transfer protein) and Mal d 4 (profilin). In this work new advances in the characterization of apple allergen gene families have been reached using a multidisciplinary approach. First of all, a genomic approach was used for the characterization of the allergen gene families of Mal d 1 (task of Chapter 1), Mal d 2 and Mal d 4 (task of Chapter 5). In particular, in Chapter 1 the study of two large contiguos blocks of DNA sequences containing the Mal d 1 gene cluster on LG16 allowed to acquire many new findings on number and orientation of genes in the cluster, their physical distances, their regulatory sequences and the presence of other genes or pseudogenes in this genomic region. Three new members were discovered co-localizing with the other Mal d 1 genes of LG16 suggesting that the complexity of the genetic base of allergenicity will increase with new advances. Many retrotranspon elements were also retrieved in this cluster. Due to the developement of molecular markers on the two sequences, the anchoring of the physical and the genetic map of the region has been successfully achieved. Moreover, in Chapter 5 the existence of other loci for the Thaumatine-like protein family in apple (Mal d 2.03 on LG4 and Mal d 2.02 on LG17) respect the one reported up to now was demonstred for the first time. Also one new locus for profilins (Mal d 4.04) was mapped on LG2, close to the Mal d 4.02 locus, suggesting a cluster organization for this gene family, as is well reported for Mal d 1 family. Secondly, a methodological approach was used to set up an highly specific tool to discriminate and quantify the expression of each Mal d 1 allergen gene (task of Chapter 2). In aprticular, a set of 20 Mal d 1 gene specific primer pairs for the quantitative Real time PCR technique was validated and optimized. As a first application, this tool was used on leaves and fruit tissues of the cultivar Florina in order to identify the Mal d 1 allergen genes that are expressed in different tissues. The differential expression retrieved in this study revealed a tissue-specificity for some Mal d 1 genes: 10/20 Mal d 1 genes were expressed in fruits and, indeed, probably more involved in the allergic reactions; while 17/20 Mal d 1 genes were expressed in leaves challenged with the fungus Venturia inaequalis and therefore probably interesting in the study of the plant defense mechanism. In Chapter 3 the specific expression levels of the 10 Mal d 1 isoallergen genes, found to be expressed in fruits, were studied for the first time in skin and flesh of apples of different genotypes. A complex gene expression profile was obtained due to the high gene-, tissue- and genotype-variability. Despite this, Mal d 1.06A and Mal d 1.07 expression patterns resulted particularly associated with the degree of allergenicity of the different cultivars. They were not the most expressed Mal d 1 genes in apple but here it was hypotized a relevant importance in the determination of allergenicity for both qualitative and quantitative aspects of the Mal d 1 gene expression levels. In Chapter 4 a clear modulation for all the 17 PR-10 genes tested in young leaves of Florina after challenging with the fungus V. inaequalis have been reported but with a peculiar expression profile for each gene. Interestingly, all the Mal d 1 genes resulted up-regulated except Mal d 1.10 that was down-regulated after the challenging with the fungus. The differences in direction, timing and magnitude of induction seem to confirm the hypothesis of a subfunctionalization inside the gene family despite an high sequencce and structure similarity. Moreover, a modulation of PR-10 genes was showed both in compatible (Gala-V. inaequalis) and incompatible (Florina-V. inaequalis) interactions contribute to validate the hypothesis of an indirect role for at least some of these proteins in the induced defense responses. Finally, a certain modulation of PR-10 transcripts retrieved also in leaves treated with water confirm their abilty to respond also to abiotic stress. To conclude, the genomic approach used here allowed to create a comprehensive inventory of all the genes of allergen families, especially in the case of extended gene families like Mal d 1. This knowledge can be considered a basal prerequisite for many further studies. On the other hand, the specific transcriptional approach make it possible to evaluate the Mal d 1 genes behavior on different samples and conditions and therefore, to speculate on their involvement on apple allergenicity process. Considering the double nature of Mal d 1 proteins, as apple allergens and as PR-10 proteins, the gene expression analysis upon the attack of the fungus created the base for unravel the Mal d 1 biological functions. In particular, the knowledge acquired in this work about the PR-10 genes putatively more involved in the specific Malus-V. inaequalis interaction will be helpful, in the future, to drive the apple breeding for hypo-allergenicity genotype without compromise the mechanism of response of the plants to stress conditions. For the future, the survey of the differences in allergenicity among cultivars has to be be thorough including other genotypes and allergic patients in the tests. After this, the allelic diversity analysis with the high and low allergenic cultivars on all the allergen genes, in particular on the ones with transcription levels correlated to allergencity, will provide the genetic background of the low ones. This step from genes to alleles will allow the develop of molecular markers for them that might be used to effectively addressed the apple breeding for hypo-allergenicity. Another important step forward for the study of apple allergens will be the use of a specific proteomic approach since apple allergy is a multifactor-determined disease and only an interdisciplinary and integrated approach can be effective for its prevention and treatment.
Resumo:
Charakterisierung synapsenassoziierter Proteine des Haushuhns(Gallus gallus domesticus) Die Familie der synapsenassoziierten Proteine (SAP) umfaßt bei Säugern vier Proteine: SAP90 (=PSD-95), SAP97, SAP102 (=PSD-93) und Chapsyn110. Die Proteine enthalten charakteristischerweise drei PDZ-Domänen, eine SH3-Domäne und eine GK-Domäne über die sie mit anderen Proteinen interagieren können. SAP können so Verbindungen zwischen Neurotransmitterrezeptoren und Signaltransduktionsmolekülen sowie dem Zytoskelett herstellen.In dieser Arbeit wurden die synapsenassoziierten Proteine des Huhns charakterisiert. Die cDNAs von SAP90, SAP97 und Chapsyn110 wurden sequenziert. Die cDNA von SAP102 wurde teilweise sequenziert. Die Analyse genomischer DNA durch PCR ergab, daß die SAP90- und SAP97-mRNA von einem Gen transkribiert werden. Die mRNA-Verteilung von SAP90, SAP97 und Chapsyn110 im Gehirn einen Tag alter Küken wurde mit in situ Hybridisierung untersucht. Die Verteilung der SAP90-mRNA und von NMDA-Rezeptoren im Gehirn des Huhns ist sehr ähnlich. Weiterhin wurde bei Küken untersucht, inwieweit SAP bei der Prägung eine Rolle spielen. Der relative mRNA-Gehalt von SAP90, SAP97 und Chapsyn110 wurde 30 Minuten, 5 Stunden und 10 Stunden nach einer akustische Prägung der Küken gemessen. Fünf Stunden nach akustischer Prägung war der Gehalt der SAP90-mRNA, im anterioren lateralen Hyperstriatum ventrale um 13% erhöht. Der mRNA-Gehalt in anderen Regionen und der anderen SAP-Gene war unverändert.
Resumo:
Part I : A zinc finger gene Tzf1 was cloned in the earlier work of the lab by screening a ë-DASH2 cDNA expression library with an anti-Rat SC antibody. A ë-DASH2 genomic DNA library and cosmid lawrist 4 genomic DNA library were screened with the cDNA fragment of Tzf1 to determine the genomic organization of Tzf1. Another putative zinc finger gene Tzf2 was found about 700 bp upstream of Tzf1.RACE experiment was carried out for both genes to establish the whole length cDNA. The cDNA sequences of Tzf and Tzf2 were used to search the Flybase (Version Nov, 2000). They correspond to two genes found in the Flybase, CG4413 and CG4936. The CG4413 transcript seems to be a splicing variant of Tzf transcripts. Another two zinc finger genes Tzf3 and Tzf4 were discovered in silico. They are located 300 bp away from Tzf and Tzf2, and a non-tandem cluster was formed by the four genes. All four genes encode proteins with a very similar modular structure, since they all have five C2H2 type zinc fingers at their c-terminal ends. This is the most compact zinc finger protein gene cluster found in Drosophila melanogaster.Part II: 34,056 bp insert of the cosmid 19G11
Resumo:
The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.
Resumo:
Here I will focus on three main topics that best address and include the projects I have been working in during my three year PhD period that I have spent in different research laboratories addressing both computationally and practically important problems all related to modern molecular genomics. The first topic is the use of livestock species (pigs) as a model of obesity, a complex human dysfunction. My efforts here concern the detection and annotation of Single Nucleotide Polymorphisms. I developed a pipeline for mining human and porcine sequences. Starting from a set of human genes related with obesity the platform returns a list of annotated porcine SNPs extracted from a new set of potential obesity-genes. 565 of these SNPs were analyzed on an Illumina chip to test the involvement in obesity on a population composed by more than 500 pigs. Results will be discussed. All the computational analysis and experiments were done in collaboration with the Biocomputing group and Dr.Luca Fontanesi, respectively, under the direction of prof. Rita Casadio at the Bologna University, Italy. The second topic concerns developing a methodology, based on Factor Analysis, to simultaneously mine information from different levels of biological organization. With specific test cases we develop models of the complexity of the mRNA-miRNA molecular interaction in brain tumors measured indirectly by microarray and quantitative PCR. This work was done under the supervision of Prof. Christine Nardini, at the “CAS-MPG Partner Institute for Computational Biology” of Shangai, China (co-founded by the Max Planck Society and the Chinese Academy of Sciences jointly) The third topic concerns the development of a new method to overcome the variety of PCR technologies routinely adopted to characterize unknown flanking DNA regions of a viral integration locus of the human genome after clinical gene therapy. This new method is entirely based on next generation sequencing and it reduces the time required to detect insertion sites, decreasing the complexity of the procedure. This work was done in collaboration with the group of Dr. Manfred Schmidt at the Nationales Centrum für Tumorerkrankungen (Heidelberg, Germany) supervised by Dr. Annette Deichmann and Dr. Ali Nowrouzi. Furthermore I add as an Appendix the description of a R package for gene network reconstruction that I helped to develop for scientific usage (http://www.bioconductor.org/help/bioc-views/release/bioc/html/BUS.html).
Resumo:
This 9p21 locus, encode for important proteins involved in cell cycle regulation and apoptosis containing the p16/CDKN2A (cyclin-dependent kinase inhibitor 2a) tumor suppressor gene and two other related genes, p14/ARF and p15/CDKN2B. This locus, is a major target of inactivation in the pathogenesis of a number of human tumors, both solid and haematologic, and is a frequent site of loss or deletion also in acute lymphoblastic leukemia (ALL) ranging from 18% to 45% 1. In order to explore, at high resolution, the frequency and size of alterations affecting this locus in adult BCR-ABL1-positive ALL and to investigate their prognostic value, 112 patients (101 de novo and 11 relapse cases) were analyzed by genome-wide single nucleotide polymorphisms arrays and gene candidate deep exon sequencing. Paired diagnosis-relapse samples were further available and analyzed for 19 (19%) cases. CDKN2A/ARF and CDKN2B genomic alterations were identified in 29% and 25% of newly diagnosed patients, respectively. Deletions were monoallelic in 72% of cases and in 43% the minimal overlapping region of the lost area spanned only the CDKN2A/2B gene locus. The analysis at the time of relapse showed an almost significant increase in the detection rate of CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06). Point mutations within the 9p21 locus were found at very low level with only a non-synonymous substition in the exon 2 of CDKN2A. Finally, correlation with clinical outcome showed that deletions of CDKN2A/B are significantly associated with poor outcome in terms of overall survival (p = 0.0206), disease free-survival (p = 0.0010) and cumulative incidence of relapse (p = 0.0014). The inactivation of 9p21 locus by genomic deletions is a frequent event in BCR-ABL1-positive ALL. Deletions are frequently acquired at the leukemia progression and work as a poor prognostic marker.
Resumo:
I disturbi dello spettro autistico (DSA) ed il ritardo mentale (RM) sono caratterizzati da un’eziologia genetica complessa ed eterogenea. Grazie ai recenti sviluppi nella ricerca genomica, è stato possibile dimostrare il ruolo di numerose copy number variants (CNVs) nella patogenesi di questi disturbi, anche se nella maggior parte dei casi l’eziologia rimane ancora sconosciuta. Questo lavoro riguarda l’identificazione e la caratterizzazione dei CNVs in famiglie con DSA e RM. E’ stata studiata una microdelezione in 7q31 che coinvolge i geni IMMP2L e DOCK4, trasmessa dalla madre con dislessia a due figli con autismo ed una figlia con dislessia. Nella stessa famiglia segrega una seconda microdelezione in 2q14 che inattiva il gene CNTNAP5 ed è trasmessa dal padre (con tratti autistici) ai due figli con autismo. Abbiamo quindi ipotizzato che i geni DOCK4 e CNTNAP5 potessero essere implicati, rispettivamente, nella suscettibilità a dislessia e DSA. Lo screening di numerosi individui affetti ha supportato la nostra ipotesi, con l’identificazione di una nuova microdelezione di DOCK4 che segrega con la dislessia, e 3 nuove varianti missenso in CNTNAP5 in individui con autismo. Dall’analisi genomica comparativa su array (aCGH) di individui con RM, è stata identificata una delezione nella regione 7q31.32, che coinvolge il gene CADPS2, in due fratelli con RM e tratti autistici, probabilmente ereditata dalla madre. Lo screening di mutazione di questo gene in individui con autismo o RM, ha portato all’identificazione di 3 varianti non sinonime, assenti nei controlli, ed ereditate per via materna. Poiché CADPS2 risiede in una regione genomica che contiene loci soggetti ad imprinting, abbiamo ipotizzato che il gene CADPS2 possa essere anch’esso caratterizzato da imprinting, con espressione monoallelica materna. Lo studio di espressione di CADPS2 in cellule del sangue ha avvalorato questa ipotesi, implicando perciò CADPS2 come un nuovo gene di suscettibilità per il RM e DSA.
Resumo:
Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.
Resumo:
Enterobacteriaceae genomes evolve through mutations, rearrangements and horizontal gene transfer (HGT). The latter evolutionary pathway works through the acquisition DNA (GEI) modules of foreign origin that enhances fitness of the host to a given environment. The genome of E. coli IHE3034, a strain isolated from a case of neonatal meningitis, has recently been sequenced and its subsequent sequence analysis has predicted 18 possible GEIs, of which: 8 have not been previously described, 5 fully meet the pathogenic island definition and at least 10 that seem to be of prophagic origin. In order to study the GEI distribution of our reference strain, we screened for the presence 18 GEIs a panel of 132 strains, representative of E. coli diversity. Also, using an inverse nested PCR approach we identified 9 GEI that can form an extrachromosomal circular intermediate (CI) and their respective attachment sites (att). Further, we set up a qPCR approach that allowed us to determine the excision rates of 5 genomic islands in different growth conditions. Four islands, specific for strains appertaining to the sequence type complex 95 (STC95), have been deleted in order to assess their function in a Dictyostelium discoideum grazing assays. Overall, the distribution data presented here indicate that 16 IHE3034 GEIs are more associated to the STC95 strains. Also the functional and genetic characterization has uncovered that GEI 13, 17 and 19 are involved in the resistance to phagocitation by Dictyostelium d thus suggesting a possible role in the adaptation of the pathogen during certain stages of infection.
Resumo:
This thesis is settled within the STOCKMAPPING project, which represents one of the studies that were developed in the framework of RITMARE Flagship project. The main goals of STOCKMAPPING were the creation of a genomic mapping for stocks of demersal target species and the assembling of a database of population genomic, in order to identify stocks and stocks boundaries. The thesis focuses on three main objectives representing the core for the initial assessment of the methodologies and structure that would be applied to the entire STOCKMAPPING project: individuation of an analytical design to identify and locate stocks and stocks boundaries of Mullus barbatus, application of a multidisciplinary approach to validate biological methods and an initial assessment and improvement for the genotyping by sequencing technique utilized (2b-RAD). The first step is the individuation of an analytical design that has to take in to account the biological characteristics of red mullet and being representative for STOCKMAPPING commitments. In this framework a reduction and selection steps was needed due to budget reduction. Sampling areas were ranked according the individuation of four priorities. To guarantee a multidisciplinary approach the biological data associated to the collected samples were used to investigate differences between sampling areas and GSAs. Genomic techniques were applied to red mullet for the first time so an initial assessment of molecular protocols for DNA extraction and 2b-RAD processing were needed. At the end 192 good quality DNAs have been extracted and eight samples have been processed with 2b-RAD. Utilizing the software Stacks for sequences analyses a great number of SNPs markers among the eight samples have been identified. Several tests have been performed changing the main parameter of the Stacks pipeline in order to identify the most explicative and functional sets of parameters.
Resumo:
This thesis is developed in the contest of Ritmare project WP1, which main objective is the development of a sustainable fishery through the identification of populations boundaries in commercially important species in Italian Seas. Three main objectives are discussed in order to help reach the main purpose of identification of stock boundaries in Parapenaeus longirostris: 1 -Development of a representative sampling design for Italian seas; 2 -Evaluation of 2b-RAD protocol; 3 -Investigation of populations through biological data analysis. First of all we defined and accomplished a sampling design which properly represents all Italian seas. Then we used information and data about nursery areas distribution, abundance of populations and importance of P. longirostris in local fishery, to develop an experimental design that prioritize the most important areas to maximize the results with actual project funds. We introduced for the first time the use of 2b-RAD on this species, a genotyping method based on sequencing the uniform fragments produced by type IIB restriction endonucleases. Thanks to this method we were able to move from genetics to the more complex genomics. In order to proceed with 2b-RAD we performed several tests to identify the best DNA extraction kit and protocol and finally we were able to extract 192 high quality DNA extracts ready to be processed. We tested 2b-RAD with five samples and after high-throughput sequencing of libraries we used the software “Stacks” to analyze the sequences. We obtained positive results identifying a great number of SNP markers among the five samples. To guarantee a multidisciplinary approach we used the biological data associated to the collected samples to investigate differences between geographical samples. Such approach assures continuity with other project, for instance STOCKMED, which utilize a combination of molecular and biological analysis as well.
Resumo:
Pig meat and carcass quality is a complex concept determined by environmental and genetic factors concurring to the phenotypic variation in qualitative characteristics of meat (fat content, tenderness, juiciness, flavor,etc). This thesis shows the results of different investigations to study and to analyze pig meat and carcass quality focusing mainly on genomic; moreover proteomic approach has been also used. The aim was to analyze data from association studies between genes considered as candidate and meat and carcass quality in different pig breeds. The approach was used to detect new SNP in genes functionally associated to the studied traits and to confirm as candidate other genes already known. Five polymorphisms (one new SNP in Calponin 1 gene and four additional polymorphism already known in other genes) were considered on chromosome 2 (SSC2). Calponin 1 (CNN1) was associated to the studied traits and furthermore the results reported confirmed the data already known for Lactate dehydrogenase A (LDHA), Low density lipoprotein receptor (LDLR), Myogenic differentiation 1 (MYOD1) e Ubiquitin-like 5 (UBL5), in Italian Large White pigs. Using an in silico search it was possible to detect on SSC2 a new SNP of Deoxyhypusine synthase (DHPS) gene partially overlapping with WD repeat domain 83 (WDR83) gene and significant for the meat pH variation in Italian Large White (ILW) pigs. Perilipin 1 (PLIN1) mapping on chromosome 7 and Perilipin 2 (PLIN2) mapping on chromosome 1 were studied and the results obtained in Duroc breed have shown significant associations with carcass traits. Moreover a study of protein composition of porcine LD muscle, indicated an effect of temperature treatment of carcass, on proteins of the sarcoplasmic fraction and in particular on PGM1 phosphorylation. Future studies on pig meat quality should be based on the integration of different experimental approaches (genomics, proteomics, transcriptomics, etc).
Resumo:
The aim of this work was to identify markers associated with production traits in the pig genome using different approaches. We focused the attention on Italian Large White pig breed using Genome Wide Association Studies (GWAS) and applying a selective genotyping approach to increase the power of the analyses. Furthermore, we searched the pig genome using Next Generation Sequencing (NSG) Ion Torrent Technology to combine selective genotyping approach and deep sequencing for SNP discovery. Other two studies were carried on with a different approach. Allele frequency changes for SNPs affecting candidate genes and at Genome Wide level were analysed to identify selection signatures driven by selection program during the last 20 years. This approach confirmed that a great number of markers may affect production traits and that they are captured by the classical selection programs. GWAS revealed 123 significant or suggestively significant SNP associated with Back Fat Thickenss and 229 associated with Average Daily Gain. 16 Copy Number Variant Regions resulted more frequent in lean or fat pigs and showed that different copies of those region could have a limited impact on fat. These often appear to be involved in food intake and behavior, beside affecting genes involved in metabolic pathways and their expression. By combining NGS sequencing with selective genotyping approach, new variants where discovered and at least 54 are worth to be analysed in association studies. The study of groups of pigs undergone to stringent selection showed that allele frequency of some loci can drastically change if they are close to traits that are interesting for selection schemes. These approaches could be, in future, integrated in genomic selection plans.
Resumo:
DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis.
Resumo:
The cytidine deaminase AID hypermutates immunoglobulin genes but can also target oncogenes, leading to tumorigenesis. The extent of AID's promiscuity and its predilection for immunoglobulin genes are unknown. We report here that AID interacted broadly with promoter-proximal sequences associated with stalled polymerases and chromatin-activating marks. In contrast, genomic occupancy of replication protein A (RPA), an AID cofactor, was restricted to immunoglobulin genes. The recruitment of RPA to the immunoglobulin loci was facilitated by phosphorylation of AID at Ser38 and Thr140. We propose that stalled polymerases recruit AID, thereby resulting in low frequencies of hypermutation across the B cell genome. Efficient hypermutation and switch recombination required AID phosphorylation and correlated with recruitment of RPA. Our findings provide a rationale for the oncogenic role of AID in B cell malignancy.