975 resultados para Experimental cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé de l'article : L'hyperplasie intimale est un processus de remodelage vasculaire ubiquitaire après une lésion, pouvant menacer la perméabilité de tout type de reconstruction vasculaire. Les mécanismes physiopathologiques impliqués dans le développement de l'hyperplasie intimale ne sont que partiellement élucidés. Il est par conséquent nécessaire d'effectuer des recherches complémentaires afin d'en améliorer la compréhension et ainsi permettre l'élaboration de nouvelles stratégies thérapeutiques médicamenteuses. La culture de veines en milieu statique permet le développement de l'hyperplasie intimale. Ce modèle maintient la viabilité tissulaire, comme décrit précédemment dans d'autres études, mais empêche l'analyse des paramètres hémodynamiques. La mise au point d'un modèle de perfusion in vitro permettant la perfusion de segments vasculaires représente une approche expérimentale intégrant les différents facteurs hémodynamiques. Le système de perfusion (Ex Vivo Vein Support System) que nous avons élaboré conserve l'intégrité pariétale ainsi que les propriétés vasomotrices des veines pour une durée de 14 jours. Cette étude démontre que les deux modèles permettent le développement de l'hyperplasie intimale. Toutefois, les propriétés vasomotrices ainsi que l'influence des paramètres hémodynamiques ne peuvent être analysées que par l'utilisation du système de perfusion. Ce dernier a permis de perfuser des vaisseaux humains sans contamination bactérienne tout en maintenant l'intégrité cellulaire. Ce modèle de perfusion se rapproche plus des conditions hémodynamiques rencontrées in vivo que le modèle statique. Abstract : Background. Intimal hyperplasia (IH) is a vascular remodeling process which often leads to failure of arterial bypass or hemodialysis access. Experimental and clinical work have provided insight in IH development; however, further studies under precise con-trolled conditions are required to improve therapeutic strategies to inhibit IH development. Ex vivo perfusion of human vessel segments under standardized hemodynamic conditions may provide an adequate experimental approach for this purpose. Therefore, chronically perfused venous segments were studied and compared to traditional static culture procedures with regard to functional and histomorphologic characteristics as well as gene expression. Materials and methods. Static vein culture allowing high tissue viability was performed as previously described. Ex vivo vein support system (EVVSS) was performed using a vein support system consisting of an incubator with a perfusion chamber and a pump. EVVSS allows vessel perfusion under continuous flow while maintaining controlled hemodynamic conditions. Each human saphenous vein was divided in two parts, one cultured in a Pyrex dish and the other part perfused in EVVSS for 14 days. Testing of vasomotion, histomorphometry, expression of CD 31, Factor VIII, MIB 1, α-actin, and PAI-1 were determined before and after 14 days of either experimental conditions. Results, Human venous segments cultured under traditional or perfused conditions exhibited similar IH after 14 days as shown by histomorphometry. Smooth-muscle cell ( SMC) was preserved after chronic perfusion. Although integrity of both endothelial and smooth-muscle cells appears to be maintained in both culture conditions as confirmed by CD31, factor VIII and α-actin expression, a few smooth-muscle cells in the media stained positive for factor VIII. Cell-proliferation marker MIB-1 was also detected in the two settings and PAI-1 mRNA expression and activity increased significantly after 14 days of culture and perfusion. Conclusion. This study demonstrates the feasibility to chronically perfuse human vessels under sterile conditions with preservation of cellular integrity and vascular contractility. To gain insights into the mechanisms leading to IH, it will now be possible to study vascular remodeling not only under static conditions but also in hemodynamic environment mimicking as closely as possible the flow conditions encountered in reconstructive vascular surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY Radiotherapy is commonly and efficiently used to treat solid cancer in the clinic. Experimental evidence however suggests that radiation can promote tumor progression by inducing chronic modifications of the tumor microenvironment. Clinically, these observations are highly relevant to aggressive tumoral lesions relapsing after radiation therapy, a leading cause of patients' death. The investigation and understanding of the biological mechanisms implicated in the malignant progression of post-radiation relapses are therefore of major importance. Here we used a syngeneic (immunocompetent) breast cancer orthotopic xenograft model, to show that local irradiation of the mammary gland promotes the appearance of an invasive and metastatic tumor phenotype. Previous studies in our laboratory revealed that inhibition of tumor-induced angiogenesis and consequent increase in tumor hypoxia promotes metastasis formation through the activation of pro-invasive programs in the tumor cells. Our results extend these observations suggesting that mammary gland irradiation induces the recruitment of CD11b+ cells to both the primary tumor and the lungs at pre-metastatic stages through the hypoxia-dependent induction of Kit-ligand (KITL) expression in primary tumors. Abrogation of KITL expression in tumor cells prevented CD11 b+ cells accumulation in both the primary tumor and lungs and significantly reduced metastases of tumors growing in irradiated mammary gland. Importantly, irradiated mammary gland enhanced tumor-induced mobilization of circulating CD11b+cKit+ myelomonocytic cells through a HIF1- and KITL-dependent process. By cell transfer experiments, mobilized circulating CD11b+cKit+ cells were shown to supply both tumor- and lungs infiltrating CD11b+ cells. Using a blocking antibody against cKit (the KITL receptor), the mobilization of CD11b+cKit+ ceils was prevented as well as lung metastases derived from tumors growing in irradiated mammary gland. Taken together, these results indicate that tumors growing in a pre-irradiated mammary gland partially promote their malignant progression through the distant mobilization of circulating myelomonocytic precursor cells. They identify KITL inhibition and/or cKit receptor neutralization as potentially promising therapeutic approaches for post-radiation relapses. RESUME La radiothérapie est largement utilisée comme traitement de choix de nombreux types de cancers. L'agressivité des récidives tumorales observée en clinique après radiothérapie suggère cependant que le recours à l'irradiation pourrait dans certains cas accélérer la progression tumorale. De récents travaux expérimentaux ont en effet permis d'appuyer cette hypothèse, en montrant notamment l'effet néfaste des modifications chroniques de l'environnement induites par l'irradiation sur la progression tumorale. A l'aide d'un modèle murin syngénique orthotopique de cancer de sein, nous avons pu montrer que l'irradiation locale de la glande mammaire facilite l'invasion et la dissémination métastatique des cellules tumorales en favorisant le recrutement de cellules myéloïdes CD11 b+ vers la tumeur primaire et les poumons à un stade pré-métastatique. Comme mécanisme impliqué dans le recrutement des cellules CD11b+, nous avons pu observer après irradiation locale de la glande mammaire une expression augmentée de Kit-ligand (KITL) dans la tumeur (induite par l'hypoxie) ainsi que la mobilisation de cellules myéloïdes circulantes exprimant le récepteur cKit et précurseurs des cellules CD11b+ infiltrant la tumeur et les poumons. En empêchant la mobilisation par la tumeur de cellules circulantes cKit+ par des approches à la fois génétique et pharmacologique nous avons pu prévenir l'accumulation de cellules myéloïdes CD11 b+ dans la tumeur primaire et les poumons ainsi que la dissémination métastatique induites par' l'irradiation de la glande mammaire. De façon générale, ces résultats montrent que la progression agressive des tumeurs qui se développent dans un environnement irradié repose à la fois sur l'expression tumorale de KITL et la mobilisation de cellules myéloïdes précurseurs cKit*. Ils auront permis d'identifier KITL et/ou cKit comme des cibles thérapeutiques potentielles intéressantes pour le traitement des récidives tumorales après radiothérapie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The murine model of infection with Leishmania major has allowed the demonstration in vivo of the importance CD4+ T cell subsets, distinguishable by the pattern of cytokines they produce, on the outcome of infectious diseases. Genetically determined resistance and susceptibility to infection with this parasite are the result of the development of Th1 and Th2 response, respectively. In this short paper, we present some results obtained in our group pertaining to the analysis of the mechanisms, operational during the early phase of this infection, responsible for the maturation of these functionally distinct CD4+ responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cornerstone of the concept of immunosurveillance in cancer should be the experimental demonstration of immune responses able to alter the course of in vivo spontaneous tumor progression. Elegant genetic manipulation of the mouse immune system has proved this tenet. In parallel, progress in understanding human T cell mediated immunity has allowed to document the existence in cancer patients of naturally acquired T cell responses to molecularly defined tumor antigens. Various attributes of cutaneous melanoma tumors, notably their adaptability to in vitro tissue culture conditions, have contributed to convert this tumor in the prototype for studies of human antitumor immune responses. As a consequence, the first human cytolytic T lymphocyte (CTL)-defined tumor antigen and numerous others have been identified using lymphocyte material from patients bearing this tumor, detailed analyses of specific T cell responses have been reported and a relatively large number of clinical trials of vaccination have been performed in the last 15 years. Thus, the "melanoma model" continues to provide valuable insights to guide the development of clinically effective cancer therapies based on the recruitment of the immune system. This chapter reviews recent knowledge on human CD8 and CD4 T cell responses to melanoma antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The exact role of individual T cell-subsets in the development of rejection is not clearly defined. Given their distinct phenotypes, effector functions and trafficking patterns, naïve (CD45RBhiCD44lo) and memory (CD45RBloCD44hi) T cells may play distinct roles in anti-donor immunity after transplantation. Furthermore, only the CD4+CD45RBlo population contains CD4+CD25+ T cells, a subset with suppressive functions playing a major role in the maintenance of peripheral tolerance. The aim of this work was to study the contribution of these individual subsets in alloresponses via the direct and indirect pathways using a murine experimental model. Methods and materials: Purified naïve or memory CD4+ T cells were adoptively transferred into lymphopenic mice undergoing a skin allograft. Donor to recipient MHC combinations were chosen in order to study the direct and the indirect pathways of allorecognition separately. Graft survival and in vivo expansion, effector function and trafficking of the transferred T cells was assessed at different time points after transplantation. Results: We found that the cross-reactive CD4+CD45RBlo memory T-cell pool was heterogeneous and contained cells with regulatory potentials, both in the CD4+CD25+ and CD4+CD25-populations. CD4+ T cells capable of inducing strong primary alloreactive responses in vitro and rejection of a first allograft in vivo were mainly contained within the CD45RBhi naïve CD4+ T-cell compartment. CD4+CD45RBlo T cells proliferated less abundantly to allogeneic stimulation than their naïve counterparts both in vitro and in vivo, and allowed prolonged allograft survival even after the depletion of the CD4+CD25+ subset. Interestingly, CD4+CD25-CD45RBlo T cells were capable of prolonging allograft survival, mainly when the indirect pathway was the only mechanism of allorecognition. The indirect pathway response, which was shown to drive true chronic rejection and contribute to chronic allograft dysfunction, was predominantly mediated by naïve CD4+ T cells. Conclusion: This work provides new insights into the mechanisms that drive allograft rejection and should help develop new clinical immunosuppressive protocols. In particular, our results highlight the importance of selectively targeting individual T-cell subsets to prevent graft rejection but at the same time maintain immune protective responses to common pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-idiotype antibody therapy of B-cell lymphomas, despite numerous promising experimental and clinical studies, has so far met with limited success. Tailor-made monoclonal anti-idiotype antibodies have been injected into a large series of lymphoma patients, with a few impressive complete tumour remissions but a large majority of negative responses. The results presented here suggest that, by coupling to antilymphoma idiotype antibodies a few molecules of the tetanus toxin universal epitope peptide P2 (830-843), one could markedly increase the efficiency of this therapy. We show that after 2-hr incubation with conjugates consisting of the tetanus toxin peptide P2 coupled by an S-S bridge to monoclonal antibodies directed to the lambda light chain of human immunoglobulin, human B-lymphoma cells can be specifically lysed by a CD4 T-lymphocyte clone specific for the P2 peptide. Antibody without peptide did not induce B-cell killing by the CD4 T-lymphocyte clone. The free cysteine-peptide was also able to induce lysis of the B-lymphoma target by the T-lymphocyte clone, but at a molar concentration 500 to 1000 times higher than that of the coupled peptide. Proliferation assays confirmed that the antibody-peptide conjugate was antigenically active at a much lower concentration than the free peptide. They also showed that antibody-peptide conjugates required an intact processing function of the B cell for peptide presentation, which could be selectively inhibited by leupeptin and chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity reacts to conserved bacterial molecules. The outermost lipopolysaccharide (LPS) of Gram-negative organisms is highly inflammatory. It activates responsive cells via specific CD14 and toll-like receptor-4 (TLR4) surface receptor and co-receptors. Gram-positive bacteria do not contain LPS, but carry surface teichoic acids, lipoteichoic acids and peptidoglycan instead. Among these, the thick peptidoglycan is the most conserved. It also triggers cytokine release via CD14, but uses the TLR2 co-receptor instead of TLR4 used by LPS. Moreover, whole peptidoglycan is 1000-fold less active than LPS in a weight-to-weight ratio. This suggests either that it is not important for inflammation, or that only part of it is reactive while the rest acts as ballast. Biochemical dissection of Staphylococcus aureus and Streptococcus pneumoniae cell walls indicates that the second assumption is correct. Long, soluble peptidoglycan chains (approximately 125 kDa) are poorly active. Hydrolysing these chains to their minimal unit (2 sugars and a stem peptide) completely abrogates inflammation. Enzymatic dissection of the pneumococcal wall generated a mixture of highly active fragments, constituted of trimeric stem peptides, and poorly active fragments, constituted of simple monomers and dimers or highly polymerized structures. Hence, the optimal constraint for activation might be 3 cross-linked stem peptides. The importance of structural constraint was demonstrated in additional studies. For example, replacing the first L-alanine in the stem peptide with a D-alanine totally abrogated inflammation in experimental meningitis. Likewise, modifying the D-alanine decorations of lipoteichoic acids with L-alanine, or deacylating them from their diacylglycerol lipid anchor also decreased the inflammatory response. Thus, although considered as a broad-spectrum pattern-recognizing system, innate immunity can detect very subtle differences in Gram-positive walls. This high specificity underlines the importance of using well-characterized microbial material in investigating the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have recently reported that Notch 1, a member of the Notch multigene family, is essential for the development of murine T cells. Using a mouse model in which Notch 1 is inactivated in bone marrow (BM) precursors we have shown that B cells instead of T cells are found in the thymus of BM chimeras. However, it is not clear whether these B cells develop by default from a common lymphoid precursor due to the absence of Notch 1 signaling, or whether they arise as a result of perturbed migration of BM-derived B cells and/or altered homeostasis of normal resident thymic B cells. In this report we show that Notch 1-deficient thymic B cells resemble BM B cells in phenotype and turnover kinetics and are located predominantly in the medulla and corticomedullary junction. Peripheral blood lymphocyte analysis shows no evidence of recirculating Notch1(-/)- BM B cells. Furthermore, lack of T cell development is not due to a failure of Notch1(-/)- precursors to home to the thymus, as even after intrathymic reconstitution with BM cells, B cells instead of T cells develop from Notch 1-deficient precursors. Taken together, these results provide evidence for de novo ectopic B cell development in the thymus, and support the hypothesis that in the absence of Notch 1 common lymphoid precursors adopt the default cell fate and develop into B cells instead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The scope of this review is to provide the current status of HIV vaccine clinical development. A series of issues regarding the type of immune response stimulated by the candidate vaccines in the pipeline, the advances in the immune correlates of protection, the need for an effective decision-making process for selection of candidate vaccines into further clinical development and the rationale for clinical trials will also be discussed. RECENT FINDINGS: Efforts in the development of HIV vaccines inducing broad neutralizing antibodies have failed so far. The current pipeline is predominantly composed of candidate vaccines designed to induce cellular immunity and particularly T-cell response. For these reasons, these candidate vaccines have been termed 'T-cell vaccines'. A large number of candidate vaccines or vaccine combinations have entered phase I-II clinical trials in 2005. Furthermore, an adenovirus vector-based vaccine has entered proof-of-concept efficacy trial and a canarypox vector in combination with a protein-based vaccine is currently being evaluated in phase III clinical trials. T-cell vaccines have been shown to be safe and the most recent generation of these vaccines also has substantial immunogenicity. SUMMARY: Only clinical trials can provide the definitive answer to immune correlates of protection and vaccine efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) has recently been implicated in the pathogenesis of malarial anaemia. However, field studies have reported contradictory results on circulating MIF concentrations in patients with clinically overt Plasmodium falciparum malaria. We determined plasma MIF levels over time in 10 healthy volunteers during experimental P. falciparum infection. Under fully controlled conditions, MIF levels decreased significantly during early blood-stage infection and reached a nadir at day 8 post-infection. A decrease in the number of circulating lymphocytes, which are an important source of MIF production, paralleled the decrease in MIF levels. Monocyte/macrophage counts remained unchanged. At MIF nadir, the anti-inflammatory cytokine interleukin (IL)-10, which is an inhibitor of T-cell MIF production, was detectable in only 2 of 10 volunteers. Plasma concentrations of the pro-inflammatory cytokines IL-8 and IL-1beta were only marginally elevated. We conclude that circulating MIF levels decrease early in blood-stage malaria as a result of the decline in circulating lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription-PCR. The hepatocyte nuclear transcription factor HNF-3-alpha (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.