958 resultados para Estrategias didácticas
Resumo:
En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
Esta propuesta es el resultado de la investigación llevada a cabo en el Núcleo de Pensamiento Aleatorio y los objetivos fueron (1) diseñar una unidad didáctica que (a) abordara la enseñanza de la combinatoria con un fuerte énfasis en la comprensión e (b) involucrara a los estudiantes en la construcción colectiva de los significados mediante el trabajo en grupos colaborativos. (2) contrastar la efectividad de la unidad didáctica en el desempeño de los estudiantes en un test de combinatoria. Para responder a estos objetivos seguimos las recomendaciones de la Teoría de situaciones didácticas de Brousseau (1997) y las recomendaciones para el análisis de datos cuantitativos (Hernández- Sampieri, Fernández-Collado, & Baptista-Lucio, 2008).
Resumo:
Algunos programas funcionales de formación de profesores pretenden ofrecer oportunidades para que los profesores en formación desarrollen capacidades y competencias que les permitan utilizar nociones didácticas con el propósito de analizar un tema, producir información acerca de él y utilizar esa información para diseñar, implementar y evaluar una unidad didáctica. En este trabajo, presentamos nuestra posición sobre los procesos de aprendizaje de los profesores en formación en programas de formación de carácter funcional. Nos basamos en esta posición para fundamentar las estrategias que utilizamos para organizar el aprendizaje en un programa concreto de formación de profesores de matemáticas en ejercicio de educación básica secundaria y educación media en Colombia.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo nos centramos en la descripción de estrategias de resolución de problemas en los que el razonamiento inductivo puede ser un heurístico. La resolución de diferentes tipos de problemas puede contribuir a la adquisición de la competencia matemática. Presentamos y comparamos parte de los resultados de dos problemas propuestos en una investigación más amplia (Cañadas, 2007).
Resumo:
Llamamos problemas de Fermi a aquellos problemas que, siendo de difícil resolución, admiten una aproximación a su solución a base de romper el problema en partes más pequeñas y resolverlas por separado. En este artículo presentamos los problemas de estimación de magnitudes no alcanzables (PEMNA) como un subconjunto de los problemas de Fermi. A partir de los datos recopilados en un estudio hecho con alumnos de 12 a 16 años, caracterizamos las distintas estrategias de resolución propuestas por estos y discutimos sobre la potencialidad de estas estrategias para resolver los problemas con éxito.
Resumo:
El informe que se presenta es el resultado de nuestro trabajo de investigación para optar el título de Licenciadas en educación básica con énfasis en matemáticas. Se diseñó e implementó una secuencia de actividades sobre la enseñanza de la noción de Probabilidad marginal y conjunta a 72 estudiantes de Grado Undécimo del Instituto Técnico Industrial Francisco José de Caldas, teniendo como referente la resolución de problemas y la teoría de las situaciones didácticas propuestas por Brousseau.
Resumo:
publicamos un artículo con el título "El solitario: un juego con mucho juego", donde abordábamos este juego con una cierta generalidad. Hacíamos una descripción del juego e informábamos de su historia, las variantes posibles y una pequeña investigación en el aula sobre sus posibilidades didácticas, así como una mínima, pero suficiente, bibliografía sobre el mismo. Está disponible en el hipervínculo anterior y una reedición de dicho artículo es posible que figure en un futuro próximo en la sección “Almacén de recursos” de esta revista digital.
Resumo:
Tras unas orientaciones sobre estrategias para solucionar los juegos del anterior artículo, se proponen variantes del NIM poco conocidas.
Resumo:
El artículo analiza las estrategias desarrolladas por estudiantes de nivel medio superior al resolver problemas matemáticos de la prueba PISA. El estudio toma como base las explicaciones escritas, verbales y gestuales presentadas por los estudiantes en el proceso de resolución de los problemas. Fueron caracterizadas dos tipos de estrategias: formales e informales. Las primeras, a partir de conceptos sobre objetos, relaciones y operaciones, así como de proposiciones y propiedades matemáticas y las segundas, por medio de transformaciones como la descomposición y recomposición de formas geométricas, asimismo, del uso de la estimación visual y estimación de medidas.
Resumo:
El Modelo Curricular de la República Argentina incluye como uno de sus objetivos prácticas cooperativas en la Educación Secundaria. El presente trabajo desarrolla un proyecto para dar lugar a la estimulación de las habilidades interpersonales a través de actividades para la clase de Matemática correspondiente a la etapa de formalización de estructuras conceptuales-procedimentales, apoyadas en los Pilares del Cooperativismo, con una concepción de Educación para la Libertad, la Justicia y la Solidaridad.
Resumo:
El propósito de esta ponencia es presentar los resultados de una investigación que tuvo como objetivo analizar aspectos destacados para una comunicación apropiada en clase de matemáticas; entendida esta como la que ocurre en un espacio donde se promueve la interacción, la participación de los sujetos, la argumentación, el debate y la negociación de significados, teniendo en cuenta como aspecto central en la obtención de significados. Se desarrolló trabajando con dos poblaciones, una en el nivel básico y otra en educación superior. Se hizo un diagnóstico inicial sobre la forma como habitualmente se da la comunicación, estableciendo los patrones de interacción de esos docentes en sus clases. Se diseñaron y desarrollaron actividades específicas de clase, implementando una dinámica novedosa para el trabajo en grupo, como espacio de conjeturación, argumentación y debate hasta llegar a consensos. La investigación mostro cómo, con este tipo de estrategias la clase se convierte en una comunidad que hace, discute y aprende matemáticas.
Resumo:
En este escrito se presentan resultados de un estudio socioepistemológico para diseñar unidades didácticas basadas en prácticas y verificar la efectividad de organizadores de contenido matemático en su diseño, en el área de Precálculo. En el estudio se buscó determinar condiciones y situaciones para la generación de aprendizajes matemáticos asociados a las nociones de variación y cambio. Se identificó que la relación entre las experiencias de los estudiantes, la naturaleza variacional de las situaciones y la matemática en actividades de naturaleza social fueron un factor determinante en el éxito en la resolución de los diseños de aprendizaje.
Resumo:
En este trabajo se ofrece un estudio acerca de las desigualdades a partir de las prácticas didácticas del profesor. La investigación –que se coloca bajo el marco teórico de la socioepistemología– pretende ofrecer herramientas de ayuda que permitan encontrar enfoques metodológicos y soportes didácticos para los maestros, a fin de apoyarlos en su quehacer cotidiano. En esta etapa de la investigación hemos elaborado un primer instrumento didáctico que queremos proponer a un conjunto de maestros de nivel medio-superior para estudiar su postura frente de nuestra propuesta a fin de: darnos cuenta de cuáles son los elementos que más propician una resistencia al cambio del quehacer didáctico; verificar la factibilidad de nuestra propuesta.