952 resultados para Electron-microscope Investigations
Resumo:
Crystallization in amorphous Ge2Sb2Te5 films by irradiation with femtosecond laser was investigated. The reflectivity and X-ray diffraction measurements confirmed that the crystalline state has been achieved in amorphous Ge2Sb2Te5 films under the irradiation of fermosecond laser with an average power of 65 mW at a frequency of 1000 Hz and a pulsed width of 120 fs. The surface morphology before and after femtosecond laser irradiation was studied by scanning electron microscope; results showed that the surface of films with irradiation of femtosecond laser was composed of some the crystallized micro-region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.
Resumo:
With light illumination from an Ar ion laser, the photoinduced changes in vacuum evaporated amorphous GeSe2 films; were investigated with the X-ray diffraction (XRD), infrared absorption (IR), scanning electron microscope (SEM), transmitting electron microscope (TEM) and transmittance spectra analysis. It was observed that the optical transmittance edges of films shifted to shorter wavelength according to annealing and light illumination and the shift in well-annealed films could be recovered by annealing at 200 degrees C for 1 h in Ar air. The magnitude of shift increased with the increase of the intensity of illumination light and the illumination time. By sides, photoinduced crystallization was also observed in the exposed regions of GeSe2 films and more of it was observed with stronger intensity of illumination light.
Resumo:
NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx, films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx -> NiO + O-2 releasing O-2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 degrees C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
利用质子激发X射线荧光(PIXE)、X射线衍射(XRD)、扫描电子显微镜(SEM)以及激光拉曼光谱(LRS)技术对几个来自中国新疆、俄罗斯、加拿大和新西兰等地的软玉样品的进行了岩石矿物学特征分析,从成分组成和微观织构方面比较了各地软玉的不同特征.实验结果显示了软玉作为透闪石质玉石,随着Fe2O3含量的增加,逐步向阳起石过渡.中国和田玉以其特有的毛毡状纤维交织结构,形成了均匀细腻、油脂光泽的表面特征.无破损成分分析方法为研究贵重的古玉样品提供了技术支持.
Resumo:
利用直流磁控反应溅射技术制备了氧气和氩气的分压比为5:100的NiOx薄膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和光谱仪研究了热处理对薄膜的微观结构和光学性质的影响, 并对沉积态薄膜的粉末进行了热分析。沉积态的NiOx薄膜在262 ℃时开始分解, 导致NiOx薄膜的透过率增加和反射率降低。X射线衍射和示差扫描量热曲线(DSC)分析表明, 在热处理过程中并无物相的变化, 光学性质的变化是由于NiOx薄膜热分解引起薄膜表面形貌发生变化而引起的。通过Kissinger公式计算出
Resumo:
河南南阳独山玉的开采历史可以追溯到新石器时代,在我国玉文化中占有重要地位。鉴于当前对独山玉进行无损鉴别的方法较少,利用质子激发X荧光技术(proton induced X-ray emission,PIXE)、X射线衍射(X-ray diffraction,XRD)、激光Raman光谱(laser Raman spectroscopy,LRS)和扫描电子显微镜(scanning electron microscope,SEM)等技术对河南南阳独山玉料进行岩石矿物学分析。结果表明:独山玉主要由钙长石矿物构成,晶粒细小且结合紧密的显微结构与独山玉具有极高的稳定性有较大关系。PIXE,XRD和Raman技术作为无损分析方法为鉴定独山玉提供了准确有效的方法,为研究贵重的古玉样品提供了技术支持。
Resumo:
用扫描电镜(SEM)观察了化学沉积Ni-P合金薄膜/单晶硅基体的结构与颗粒度,利用X射线衍射(XRD)技术测试了其化学沉积后的残余应力,测量了激光热处理后残余应力的变化规律,分析了残余应力对磨损性能及界面结合强度的影响。实验结果表明,化学沉积Ni-P合金薄膜/硅基体的残余应力均表现为拉应力,经过激光热处理后残余应力发生了变化,由高值的拉应力变为低值的拉应力或压应力;薄膜残余应力对其磨损性能有明显的影响,其磨损量随着残余应力的减小而减小;薄膜与基体结合强度随着残余应力的增大而减小,合理地选择激光热处理参数可
Resumo:
O objetivo deste estudo foi avaliar pinos pré-fabricados de fibra de vidro (White Post DC/FGM) submetidos à customização por desgaste da porção apical. Experimento 1: 5 pinos n. 4 foram divididos em 5 grupos (G) de acordo com o instrumento de desgaste: GA - sem desgaste, GB- mini torno industrial (Dentsply), GC - ponta diamantada n. 3195F (KG Sorensen), GD - disco de lixa de granulação média (Sof-Lex/3M/ESPE), GE- alicate (Tramontina). Observou-se a micromorfologia dos pinos em microscópio eletrônico de varredura (ZEISS/DSM 960). Experimento 2: 60 pinos de diferentes diâmetros foram divididos em 6 grupos: G0 - pinos n. 0,5, G1 - pinos n. 1, G2 - pinos n. 2, G3 - pinos n. 3, G4 - pinos n.4, G5 - pinos n. 4 com terço apical desgastado com discos de lixa até o equivalente ao terço apical dos pinos n. 2. Os pinos foram submetidos ao teste de flexão de 3 pontos na máquina de ensaios universal (Instron 5500 R), conforme ISO 10477. Experimento 3: 20 caninos humanos permanentes sofreram tratamento endodôntico e remoção das coroas clínicas padronizando 15 mm de remanescente radicular. Os dentes foram incluídos em resina acrílica com simulação do ligamento periodontal, receberam férula de 2 mm e foram divididos em 2 grupos: GI - pinos n. 4 cimentados em condutos preparados com broca equivalente ao pino (FGM), GII - pinos n. 4 customizados no terço apical cimentados em condutos preparados com brocas (FGM) equivalentes aos pinos n. 2 em 10 mm e n. 4 em 5 mm. Os pinos foram cimentados com cimento resinoso (Rely X U100/3M/ESPE), os corpos de prova receberam coroas diretas de resina composta (Enforce Core/Dentsply) padronizadas com coras de policarbonato (TDV) e foram submetidos ao teste de resistência à fratura na Instron a 45da ferramenta cilíndrica, com força de 500 N aplicada a 2 mm da incisal na face palatina/lingual, com velocidade de 0,5 mm/min até falha. O padrão de fratura foi classificado em favorável ou desfavorável. Os resultados foram tratados estatisticamente por teste de análise de variância (ANOVA, p<0,05). Os resultados dos testes de flexão e fratura foram respectivamente: G0 - 58,406,40; G1 - 83,959,43; G2- 103,4219,17; G3 - 160,7817,30; G4 - 170,4711,28; G5 - 106,3521,96; GI - 303,0262,21 e GII - 402,81131,97. O padrão de fratura foi tratado por Mann-Whitney que observou semelhança estatística entre os grupos. Concluiu-se que o desgaste de pinos de fibra de vidro com pontas diamantadas ou discos de lixa produz alterações micromorfológicas aceitáveis. O corte com alicate deve ser evitado. A customização por desgaste da porção apical de pinos de fibra de vidro diminui a resistência à flexão a valores aceitáveis. Dentes restaurados com pinos de fibra de vidro customizados por desgaste possuem resistência à fratura superior a dentes restaurados com pinos intactos. A customização por desgaste facilita a adaptação do pino ao conduto radicular e preserva a estrutura dental.
Resumo:
Hybrid TiO2/ormosil waveguiding films have been prepared by the sol-gel method at low thermal treatment temperature of 150&DEG; C. The influence of processing parameters including the molar ratios of titanium butoxide (Ti(OBu)(4))/3-glycidoxypropyltrimethoxysilane (GLYMO) and H2O/Ti(OBu)(4) (expressed as R), especially aging of sot on the optical properties was investigated. The optical properties of films were measured with scanning electron microscope (SEM), UV/VIS/NIR spectrophotometer (UV-Vis), m-line and the scattering-detection method. The results indicate that the film thickness increases with the increase of sol aging time, but the variation of refractive index as a function of sot aging time depends on the relative ratios of GLYMO to Ti(OBu)(4). Higher transmittance and lower attenuation of the planar waveguide can be obtained in the sol with lower Ti(OBu)(4) contents and shorter aging time.
Resumo:
abstract = {TiO2/ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( less than or equal 200°C). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal analyzer, and dark m-line spectroscopy were used with the method of scattering-detection to investigate optical and structural properties. High optical quality waveguide film was obtained. The propagation loss of film was 0.569 dB/cm at a wavelength of 632.8 nm.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics were fabricated. The precipitated nanocrystal phase in the glass ceramics was identified by X-ray diffraction and transmission electron microscope. Broadband near-infrared emission centered at 1220 nm with full width at half maximum of about 240 nm and lifetime of about 250 mu s was observed with 980 nm excitation. The longer wavelength emission compared with Ni2+-doped MgAl2O4 crystal was attributed to the low crystal field occupied by Ni2+ in the glass ceramics. The present Ni2+-doped transparent glass ceramics may have potential applications in broadband optical amplifiers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
NaYF4: 0.02Er center dot xYb-PVP composite nanofibers with the diameter of similar to 400 nm have been prepared by electrospinning. Field emission scanning electron microscope and X-ray diffraction have been utilized to characterize morphology and structure of the as-prepared electrospun nanofibers. Their up-conversion luminescence is investigated under a 980-nm excitation. Green (538 and 520 nm), red (6-55 nm), and blue (405 nm) emissions are observed in the up-conversion luminescence spectra, and the intensity of these three emissions changes differently with the variety of Yb content, which has been interpreted successfully in this letter. The color of NaYF4: 0.02Er center dot xYb-PVP nanolibers under a 980-nm excitation can be changed from green --> white --> yellow gradually via changing the Yb content.
Resumo:
We report on an optical interference method to fabricate array microstructures on the surface of silicon wafers by means of five-beam interference of femtosecond laser pulses. Optical microscope and scanning electron microscope observations revealed microstructures with micrometer-order were fabricated. The diffraction characteristics of the fabricated structures were evaluated. The present technique allows one-step realization of functional optoelectronic devices on silicon surface. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Undoped Y2SiO5 single crystal was grown by the Czochralski method. The samples were optically polished after orienting and cutting. The rhombus and quadrangular dislocation etching pits, the low-angle grain boundaries and the inclusions in the samples were observed using optical microscope and scanning electron microscope. The absorption spectra were measured before and after H-2 annealing or air annealing. The absorption edge of Y2SiO5 crystal was determined to be about 202 nm. The absorption coefficient of Y2SiO5 crystal decreased after H-2 annealing and obviously increased after air annealing. (C) 2005 Elsevier B.V. All rights reserved.