975 resultados para EVEN-EVEN NYLONS
Resumo:
Every day we hear someone complain that this or that patent should not have been granted. People complain that the patent system is now a threat to existing business and innovation be- cause the patent office grants with alarming regularity patents for inventions that are neither novel nor non-obvious. People argue that the patent office cannot keep up with the job of examining the backlog of hundreds of thousands of patents and that, even if it could, the large volumes of prior art literature that need to be considered each time a patent application is received make the decision as to whether a patent should be granted or not a treacherous one.
Resumo:
In contemporary Australian theatre there seems to be no precise, universally accepted methodology that defines the dramaturgical process. There is not even agreement as to how a playwright might benefit from dramaturgy. Nevertheless, those engaged in creating original works for the Australian professional theatre have, to varying degrees, come to accept dramaturgical process as something of a necessity. Increasingly, dramaturgical process is evident in the development of new plays by state, flagship and project-based professional theatre producers. Many small to medium theatre companies provide dramaturgical assistance to playwrights although this often occurs in an ad hoc fashion, prescribed by economic restraint rather than artistic sensibility. Through an exploration of the dramaturgical development of two of his plays in several professional play development contexts, the researcher examines issues influencing contemporary dramaturgy in Australia. These plays are presented here as examinable components (weighted 70%) of the research as a whole, and they function in symbiotic relationship with the exegetical enquiry (weighted 30%). The research also presents the findings of a small-scale experiment which tests the hypothesis that a holistic approach to developing new plays might challenge conventional views on dramaturgical process. In terms of its overall conclusions, this research finds that while many playwrights and theatre professionals in Australia consider dramaturgy a distinct and important component of the creative development process, there exist substantial inconsistencies in relation to facilitating dramaturgical models that provide quality artistic outcomes for playwrights and their plays. The study presents unique qualitative and quantitative data as a contribution to knowledge in this field of enquiry, and it is anticipated that the research as a whole will be of interest to a variety of readers, including playwrights, dramaturgs, other theatre practitioners, students and teachers.
Resumo:
Voltage imbalance in capacitors is a well-known problem in compensator topologies which use two or more capacitors. This imbalance may exist even if the load does not contain any DC component, due to practical factors. However, when the load contains a DC part, the voltage imbalance problem becomes critical. In this paper, a two-quadrant chopper has been used to regulate the capacitor voltages in a two-capacitor compensator structure. Two different control strategies for the two-quadrant chopper to equalize the voltage of the capacitors have been proposed. The strategies are validated through detailed simulation studies. Experiments have also been carried out to validate the hysteresis control of chopper.
Resumo:
Purpose – This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design – A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated. The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model. The applications of the scaffolds are discussed based on its potential for TE. Findings – It is shown that the RPBOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications – Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value – One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.
Resumo:
In 1984, the International Agency for Research on Cancer determined that working in the primary aluminium production process was associated with exposure to certain polycyclic aromatic hydrocarbons (PAHs) that are probably carcinogenic to humans. Key sources of PAH exposure within the occupational environment of a prebake aluminium smelter are processes associated with use of coal-tar pitch. Despite the potential for exposure via inhalation, ingestion and dermal adsorption, to date occupational exposure limits exist only for airborne contaminants. This study, based at a prebake aluminium smelter in Queensland, Australia, compares exposures of workers who came in contact with PAHs from coal-tar pitch in the smelter’s anode plant (n = 69) and cell-reconstruction area (n = 28), and a non-production control group (n = 17). Literature relevant to PAH exposures in industry and methods of monitoring and assessing occupational hazards associated with these compounds are reviewed, and methods relevant to PAH exposure are discussed in the context of the study site. The study utilises air monitoring of PAHs to quantify exposure via the inhalation route and biological monitoring of 1-hydroxypyrene (1-OHP) in urine of workers to assess total body burden from all routes of entry. Exposures determined for similar exposure groups, sampled over three years, are compared with published occupational PAH exposure limits and/or guidelines. Results of paired personal air monitoring samples and samples collected for 1-OHP in urine monitoring do not correlate. Predictive ability of the benzene-soluble fraction (BSF) in personal air monitoring in relation to the 1-OHP levels in urine is poor (adjusted R2 < 1%) even after adjustment for potential confounders of smoking status and use of personal protective equipment. For static air BSF levels in the anode plant, the median was 0.023 mg/m3 (range 0.002–0.250), almost twice as high as in the cell-reconstruction area (median = 0.013 mg/m3, range 0.003–0.154). In contrast, median BSF personal exposure in the anode plant was 0.036 mg/m3 (range 0.003–0.563), significantly lower than the median measured in the reconstruction area (0.054 mg/m3, range 0.003–0.371) (p = 0.041). The observation that median 1-OHP levels in urine were significantly higher in the anode plant than in the reconstruction area (6.62 µmol/mol creatinine, range 0.09–33.44 and 0.17 µmol/mol creatinine, range 0.001–2.47, respectively) parallels the static air measurements of BSF rather than the personal air monitoring results (p < 0.001). Results of air measurements and biological monitoring show that tasks associated with paste mixing and anode forming in the forming area of the anode plant resulted in higher PAH exposure than tasks in the non-forming areas; median 1-OHP levels in urine from workers in the forming area (14.20 µmol/mol creatinine, range 2.02–33.44) were almost four times higher than those obtained from workers in the non-forming area (4.11 µmol/mol creatinine, range 0.09–26.99; p < 0.001). Results justify use of biological monitoring as an important adjunct to existing measures of PAH exposure in the aluminium industry. Although monitoring of 1-OHP in urine may not be an accurate measure of biological effect on an individual, it is a better indicator of total PAH exposure than BSF in air. In January 2005, interim study results prompted a plant management decision to modify control measures to reduce skin exposure. Comparison of 1-OHP in urine from workers pre- and post-modifications showed substantial downward trends. Exposure via the dermal route was identified as a contributor to overall dose. Reduction in 1-OHP urine concentrations achieved by reducing skin exposure demonstrate the importance of exposure via this alternative pathway. Finally, control measures are recommended to ameliorate risk associated with PAH exposure in the primary aluminium production process, and suggestions for future research include development of methods capable of more specifically monitoring carcinogenic constituents of PAH mixtures, such as benzo[a]pyrene.
Resumo:
In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.
Resumo:
My research is located in an abiding concern with the nation and takes a special interest in the predictions and expectations surrounding the impact of the Internet on how this institution is lived. It is my hypothesis that the effects of the Internet are not limited only to those who are users but extends even to those who may never have witnessed its workings. The research question I began with: how is the imagining of the nation affected by our understandings and expectations of the Internet, developed through the writing of the first three chapters to: how is the living of the nation affected by the Internet’s inflection on lived time and lived space?
Resumo:
Purpose, Design/methodology / approach The acknowledgement of state significance in relation to development projects can result in special treatment by regulatory authorities, particularly in terms of environmental compliance and certain economic and other government support measures. However, defining just what constitutes a “significant project”, or a project of “state significance”, varies considerably between Australian states. In terms of establishing threshold levels, in Queensland there is even less clarity. Despite this lack of definition, the implications of “state significance” can nevertheless be considerable. For example, in Queensland if the Coordinator-General declares a project to be a “significant project” under the State Development and Public Works Organisation Act 1971, the environmental impact assessment process may become more streamlined – potentially circumventing certain provisions under The Integrated Planning Act 1997. If the project is not large enough to be so deemed, an extractive resource under the State Planning Policy 2/07 - Protection of Extractive Resources 2007 may be considered to be of State or regional significance and subsequently designated as a “Key Resource Area”. As a consequence, such a project is afforded some measure of resource protection but remains subject to the normal assessment process under the Integrated Development Assessment System, as well as the usual requirements of the vegetation management codes, and other regulations. Findings (Originality/value) & Research limitations / implications This paper explores the various meanings of “state significance” in Queensland and the ramifications for development projects in that state. It argues for a streamlining of the assessment process in order to avoid or minimise constraints acting on the state’s development. In so doing, it questions the existence of a strategic threat to the delivery of an already over-stretched infrastructure program.
Resumo:
BACKGROUND: The presence of insects in stored grains is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspections of bulk grain commodities is essential to detect pests and therefore to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grains, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper we demonstrate a sampling methodology that accounts for the heterogeneous distribution of insects in bulk grains. RESULTS: We show that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling program to detect insects in bulk grains. Our results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. We also demonstrate that the probability of detecting pests in bulk grains increases as the number of sub-samples increases, even when the total volume or mass of grain sampled remains constant. CONCLUSION: This study demonstrates the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models.
Resumo:
Background Leisure-time physical activity (LTPA) shows promise for reducing the risk of poor mental health in later life, although gender- and age-specific research is required to clarify this association. This study examined the concurrent and prospective relationships between both LTPA and walking with mental health in older women. Methods Community-dwelling women aged 73–78 years completed mailed surveys in 1999, 2002 and 2005 for the Australian Longitudinal Study on Women's Health. Respondents reported their weekly minutes of walking, moderate LTPA and vigorous LTPA. Mental health was defined as the number of depression and anxiety symptoms, as assessed with the Goldberg Anxiety and Depression Scale (GADS). Multivariable linear mixed models, adjusted for socio-demographic and health-related variables, were used to examine associations between five levels of LTPA (none, very low, low, intermediate and high) and GADS scores. For women who reported walking as their only LTPA, associations between walking and GADS scores were also examined. Women who reported depression or anxiety in 1999 were excluded, resulting in data from 6653 women being included in these analyses. Results Inverse dose–response associations were observed between both LTPA and walking with GADS scores in concurrent and prospective models (p<0.001). Even low levels of LTPA and walking were associated with lowered scores. The lowest scores were observed in women reporting high levels of LTPA or walking. Conclusion The results support an inverse dose–response association between both LTPA and walking with mental health, over 3 years in older women without depression or anxiety.
Resumo:
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.
Resumo:
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
Resumo:
Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this research was to ( 1) review the literature to examine how changes in grassland management that affect soil C also impact soil N, ( 2) assess the impact of different types of grassland management on changes in soil N and rates of change, and (3) evaluate changes in N2O fluxes from differently managed grassland ecosystems to assess net impacts on GWP. Soil C and N stocks either both increased or both decreased for most studies. Soil C and N sequestration were tightly linked, resulting in little change in C: N ratios with changes in management. Within grazing treatments N2O made a minor contribution to GWP (0.1-4%), but increases in N2O fluxes offset significant portions of C sequestration gains due to fertilization (10-125%) and conversion (average = 27%). Results from this work demonstrate that even when improved management practices result in considerable rates of C and N sequestration, changes in N2O fluxes can offset a substantial portion of gains by C sequestration. Even for cases in which C sequestration rates are not entirely offset by increases in N2O fluxes, small increases in N2O fluxes can substantially reduce C sequestration benefits. Conversely, reduction of N2O fluxes in grassland soils brought about by changes in management represents an opportunity to reduce the contribution of grasslands to net greenhouse gas forcing.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.