902 resultados para Deterministic imputation
Resumo:
In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.
Resumo:
The Thesis gives a decision support framework that has significant impact on the economic performance and viability of a hydropower company. The studyaddresses the short-term hydropower planning problem in the Nordic deregulated electricity market. The basics of the Nordic electricity market, trading mechanisms, hydropower system characteristics and production planning are presented in the Thesis. The related modelling theory and optimization methods are covered aswell. The Thesis provides a mixed integer linear programming model applied in asuccessive linearization method for optimal bidding and scheduling decisions inthe hydropower system operation within short-term horizon. A scenario based deterministic approach is exploited for modelling uncertainty in market price and inflow. The Thesis proposes a calibration framework to examine the physical accuracy and economic optimality of the decisions suggested by the model. A calibration example is provided with data from a real hydropower system using a commercial modelling application with the mixed integer linear programming solver CPLEX.
Resumo:
Tässä työssä tarkastellaan keinoja ja tekniikoita, joilla Ethernet-standardin mukainen tiedonsiirtoliikenne voidaan implementoida teollisuudessa kenttälaitetasolle. Työn on tilannut Suomen johtava sähkötukkuliike SLO Oy, joka on kiinnostunut automaatioalan tilanteesta ja tulevaisuuden näkymistä. Työssä käydään läpi Ethernet-tekniikan perusteet, ja sen soveltaminen teollisuudessa kenttäväylänä, sekä muussa automaatiossa. Lisäksi katsotaan läpi tärkeimmät Ethernet-kenttäväyläprotokollat ja menetelmät, joilla Ethernet-tekniikka saadaan vastaamaan teollisuuden vaatimuksiin reaaliaikaisuuden ja deterministisyyden osalta. Työssä haastatellaan muutamia suunnittelutoimistoja, asennusliikkeitä, sekä kahta teollisuuden loppuasiakasta. Näiden haastattelujen, sekä kansainvälisen markkinatutkimuksen pohjalta tarkastellaan alan markkinatilannetta ja toimintamalleja, sekä laaditaan SLO:lle SWOT-analyysi. Analyysin pohjalta tehdään johtopäätöksiä SLO:n toiminnan mahdollisesta laajentamisesta. Tuloksena on kattava selvitys Ethernet-teollisuusautomaatiosta ja Ethernet-tekniikan hyödyntämisestä teollisuudessa yleensäkin. SLO:n kannalta mielenkiintoisimpia vaihtoehtoja ovat Profinet ja EtherCAT-järjestelmät, jotka voisivat olla sopivia SLO:n tuotevalikoimaan.
Resumo:
Tutkimuksen tavoitteena oli selvittää osakeyhtiön varojenjakomuotoja ja niihin liittyvää yhtiöoikeudellista ja vero-oikeudellista sääntelyä Suomessa. Tutkimukselle asetettiin neljä tehtävää: selvittää miten osakeyhtiölaki säätelee varojen jakamista osakeyhtiöstä ja mitä muutoksia uusi osakeyhtiölaki tuo säätelyyn, tutkia miten osingonjakoa verotettiin yhtiöveron hyvitysjärjestelmän mukaan ja miten uusi verolainsäädäntö vaikuttaa voitonjaon verosuunnitteluun osakeyhtiössä sekä selvittää onko osakeyhtiöiden varojenjakoon kohdistuva verotus kiristynyt. Tutkimus osoitti, että osakeyhtiölaki säätelee hyvin tarkasti varojenjakoa osakeyhtiössä. Varojenjako on sallittua voitonjakokelpoisten varojen puitteissa. Osakeyhtiölakiesityksen mukaan varojenjaossa tulee huomioida myös yhtiön maksukykyisyys. Yhtiöverohyvitysjärjestelmän aikana osingonjakoon kohdistui yksinkertainen verotus. Uudessa järjestelmässä osinkoja verotetaan myös osingonsaajalla, jolloin verotus on osittain kahdenkertaista. Joissain tapauksissa osakkaille on edullisempaa maksaa yhtiöstä palkkaa kuin osinkoja. Uudistuksen seurauksena myös verosuunnittelunmerkitys kasvaa.
Resumo:
This paper describes the main features and present results of MPRO-Spanish, a parser for morphological and syntactic analysis of unrestricted Spanish text developed at the IAI1. This parser makes direct use of X-phrase structure rules to handle a variety of patterns from derivational morphology and syntactic structure. Both analyses, morphological and syntactic, are realised by two subsequent modules. One module analyses and disambiguates the source words at morphological level while the other consists of a series of programs and a deterministic, procedural and explicit grammar. The article explains the main features of MPRO and resumes some of the experiments on some of its applications, some of which still being implemented like the monolingual and bilingual term extraction while others need further work like indexing. The results and applications obtained so far with simple and relatively complex sentences give us grounds to believe in its reliability.
Resumo:
"This paper will discuss the major developments in the area of fingerprint" "identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allow- ing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice domi- nated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion" "of the uniqueness of fingerprints or the opinion delivered ispe dixit."
Resumo:
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic inversion approaches, probabilistic inversion provides the full posterior probability density function of the saturation field and accounts for the uncertainties inherent in the petrophysical parameters relating the resistivity to saturation. In this study, the data are from benchtop ERT experiments conducted during gas injection into a quasi-2D brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. The saturation fields are estimated by Markov chain Monte Carlo inversion of the measured data and compared to independent saturation measurements from light transmission through the chamber. Different model parameterizations are evaluated in terms of the recovered saturation and petrophysical parameter values. The saturation field is parameterized (1) in Cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values in structural elements whose shape and location is assumed known or represented by an arbitrary Gaussian Bell structure. Results show that the estimated saturation fields are in overall agreement with saturations measured by light transmission, but differ strongly in terms of parameter estimates, parameter uncertainties and computational intensity. Discretization in the frequency domain (as in the discrete cosine transform parameterization) provides more accurate models at a lower computational cost compared to spatially discretized (Cartesian) models. A priori knowledge about the expected geologic structures allows for non-discretized model descriptions with markedly reduced degrees of freedom. Constraining the solutions to the known injected gas volume improved estimates of saturation and parameter values of the petrophysical relationship. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
This paper describes the fluctuations of temporal criteria dynamics in the context of professional sport. Specifically, we try to verify the underlying deterministic patterns in the outcomes of professional basketball players. We use a longitudinal approach based on the analysis of the outcomes of 94 basketball players over ten years, covering practically players" entire career development. Time series were analyzed with techniques derived from nonlinear dynamical systems theory. These techniques analyze the underlying patterns in outcomes without previous shape assumptions (linear or nonlinear). These techniques are capable of detecting an intermediate situation between randomness and determinism, called chaos. So they are very useful for the study of dynamic criteria in organizations. We have found most players (88.30%) have a deterministic pattern in their outcomes, and most cases are chaotic (81.92%). Players with chaotic patterns have higher outcomes than players with linear patterns. Moreover, players with power forward and center positions achieve better results than other players. The high number of chaotic patterns found suggests caution when appraising individual outcomes, when coaches try to find the appropriate combination of players to design a competitive team, and other personnel decisions. Management efforts must be made to assume this uncertainty.
Resumo:
ABSTRACT The traditional method of net present value (NPV) to analyze the economic profitability of an investment (based on a deterministic approach) does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L.) production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV) were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV) such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in Chile.
Resumo:
Tutkielmassa tarkastellaan Suomessa tehtyä osinkoverouudistusta erityisesti rajat ylittävien osinkojen kannalta. Tavoitteena on selvittää, millaisia vaikutuksia on siirtymisellä uuteen osinkoverojärjestelmään, ja mitkä syyt johtivat uudistukseen. Uudessa järjestelmässä luonnollisten henkilöiden saamia osinkoja verotetaan myös osingonsaajan tasolla, jolloin syntyy ongelmia kaksinkertaisesta verotuksesta. Uudistuksen jälkeen osinkoja verotetaan melko yhtenäisesti riippumatta osingonjakajan kotimaasta. Tutkielmassa tarkastellaan myös EY-tuomioistuimen antamaa ratkaisua koskien Suomen yhtiöveron hyvitysjärjestelmää. Tarkastelun kohteena on myös EY:n perustamissopimuksessa määritelty pääomien vapaan liikkuvuuden periaate. Tutkielmassa myös vertaillaan Suomen järjestelmää muissa EU-maissa sovellettaviin järjestelmiin. Uudistuksen vaikutuksina havaitaan olevan muun muassa sijoitusmuotoneutraliteetin muuttuminen, verosuunnittelun lisääntyminen sekä yritysten voitonjakokeinojen muuttuminen.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
OBJECTIVE: To evaluate the effectiveness of a complex intervention implementing best practice guidelines recommending clinicians screen and counsel young people across multiple psychosocial risk factors, on clinicians' detection of health risks and patients' risk taking behaviour, compared to a didactic seminar on young people's health. DESIGN: Pragmatic cluster randomised trial where volunteer general practices were stratified by postcode advantage or disadvantage score and billing type (private, free national health, community health centre), then randomised into either intervention or comparison arms using a computer generated random sequence. Three months post-intervention, patients were recruited from all practices post-consultation for a Computer Assisted Telephone Interview and followed up three and 12 months later. Researchers recruiting, consenting and interviewing patients and patients themselves were masked to allocation status; clinicians were not. SETTING: General practices in metropolitan and rural Victoria, Australia. PARTICIPANTS: General practices with at least one interested clinician (general practitioner or nurse) and their 14-24 year old patients. INTERVENTION: This complex intervention was designed using evidence based practice in learning and change in clinician behaviour and general practice systems, and included best practice approaches to motivating change in adolescent risk taking behaviours. The intervention involved training clinicians (nine hours) in health risk screening, use of a screening tool and motivational interviewing; training all practice staff (receptionists and clinicians) in engaging youth; provision of feedback to clinicians of patients' risk data; and two practice visits to support new screening and referral resources. Comparison clinicians received one didactic educational seminar (three hours) on engaging youth and health risk screening. OUTCOME MEASURES: Primary outcomes were patient report of (1) clinician detection of at least one of six health risk behaviours (tobacco, alcohol and illicit drug use, risks for sexually transmitted infection, STI, unplanned pregnancy, and road risks); and (2) change in one or more of the six health risk behaviours, at three months or at 12 months. Secondary outcomes were likelihood of future visits, trust in the clinician after exit interview, clinician detection of emotional distress and fear and abuse in relationships, and emotional distress at three and 12 months. Patient acceptability of the screening tool was also described for the intervention arm. Analyses were adjusted for practice location and billing type, patients' sex, age, and recruitment method, and past health risks, where appropriate. An intention to treat analysis approach was used, which included multilevel multiple imputation for missing outcome data. RESULTS: 42 practices were randomly allocated to intervention or comparison arms. Two intervention practices withdrew post allocation, prior to training, leaving 19 intervention (53 clinicians, 377 patients) and 21 comparison (79 clinicians, 524 patients) practices. 69% of patients in both intervention (260) and comparison (360) arms completed the 12 month follow-up. Intervention clinicians discussed more health risks per patient (59.7%) than comparison clinicians (52.7%) and thus were more likely to detect a higher proportion of young people with at least one of the six health risk behaviours (38.4% vs 26.7%, risk difference [RD] 11.6%, Confidence Interval [CI] 2.93% to 20.3%; adjusted odds ratio [OR] 1.7, CI 1.1 to 2.5). Patients reported less illicit drug use (RD -6.0, CI -11 to -1.2; OR 0·52, CI 0·28 to 0·96), and less risk for STI (RD -5.4, CI -11 to 0.2; OR 0·66, CI 0·46 to 0·96) at three months in the intervention relative to the comparison arm, and for unplanned pregnancy at 12 months (RD -4.4; CI -8.7 to -0.1; OR 0·40, CI 0·20 to 0·80). No differences were detected between arms on other health risks. There were no differences on secondary outcomes, apart from a greater detection of abuse (OR 13.8, CI 1.71 to 111). There were no reports of harmful events and intervention arm youth had high acceptance of the screening tool. CONCLUSIONS: A complex intervention, compared to a simple educational seminar for practices, improved detection of health risk behaviours in young people. Impact on health outcomes was inconclusive. Technology enabling more efficient, systematic health-risk screening may allow providers to target counselling toward higher risk individuals. Further trials require more power to confirm health benefits. TRIAL REGISTRATION: ISRCTN.com ISRCTN16059206.