970 resultados para Copper(II) Complexes
Resumo:
The title compound, [Cu(C4H8N3O2)(2)]center dot 2C(5)H(9)NO, consists of a neutral copper complex, in which the Cu II centre coordinates to two bis(methoxycarbimido) aminate ligands, solvated by two molecules of 1-methylpyrrolidin-2-one. The complex is planar and centrosymmetric, with the Cu II centre occupying a crystallographic inversion centre and adopting approximately square-planar geometry. N-H center dot center dot center dot O hydrogen-bonding interactions exist between the amine NH groups of the ligands and the O atoms of the 1-methylpyrrolidin-2-one molecules. The associated units pack to form sheets.
Resumo:
Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
Resumo:
Two sets of nickel(11) complexes of a series of tetradentate NSNO ligands were synthesized and isolated in their pure form. All these complexes, formulated as [Ni(L)Cl](2) and [Ni(L)(N-3)](2) [HL = pyridylthioazophenols], were characterized using physicochemical and spectroscopic tools. The solid-state structures of two complexes (1a and 2a) were established by X-ray crystallography. The geometry about the nickel ion of the complexes is octahedral and the complexes are dimeric in nature. In 1, two Ni(II) ions are bridged by two Cl- anions while in 2 they are bridged by two azide ions in a mu-1,1-bridging fashion. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The copper(I) complex of L, the 1:2 condensate of benzil dihydrazone and 2-formylpyridine, exists as single, helical [CuL](+) and double helical [Cu2L2](2+) in dichloromethane solution but crystallizes only as the double helicate [Cu2L2](ClO4)(2). In contrast, earlier [New J Chem, 27 (2003) 193] it has been found that with L', the 1:2 condensate of benzil dihydrazone and 2-acetylpyridine, only the single helical monomeric species [CuL'](+) is isolable as solid. This contrasting behaviour of the copper(I) complexes of L and L' are scrutinised here by density functional calculations.
Resumo:
Reaction of iodoacetic acid with cupric carbonate in water in dimmed light yields green Cu(ICH2COO)(2 center dot)H2O (1). From X-ray crystallography, it is found to be a tetra-acetato bridged copper(II) dimer with the water molecules occupying the apical positions. In thermogravimetry, the coordinated water molecules are lost in the temperature range 50-100 degrees C. From magnetic susceptibility measurements in the temperature range 300-1.8 K, the exchange coupling constant J is found to be -142(1) cm(-1) and g = 2.18(2) with the spin Hamiltonian H = -2J{S-Cu1 center dot S-Cu2}. It reacts with 2,2'-bipyridine (bpy) to yield [Cu(bpy)(2)I]I. It oxidises thiophenol to Ph-S-S-Ph under dry N-2 atmosphere.
Resumo:
Reactions of the 1: 2 condensate (L) of benzil dihydrazone and 2-acetylpyridine with Hg(ClO4)(2) center dot xH(2)O and HgI2 yield yellow [HgL2](ClO4)(2) (1) and HgLI2 (2), respectively. Homoleptic 1 is a 8-coordinate double helical complex with a Hg(II)N-8 core crystallising in the space group Pbca with cell dimensions: a = 16.2250(3), b = 20.9563(7), c = 31.9886(11) angstrom. Complex 2 is a 4-coordinate single helical complex having a Hg(II)N2I2 core crystallising in the space group P2(1)/n with cell dimensions a = 9.8011(3), b = 17.6736(6), c = 16.7123(6) angstrom and b = 95.760(3). In complex 1, the N-donor ligand L uses all of its binding sites to act as tetradentate. On the other hand, it acts as a bidentate N-donor ligand in 2 giving rise to a dangling part. From variable temperature H-1 NMR studies both the complexes are found to be stereochemically non-rigid in solution. In the case of 2, the solution process involves wrapping up of the dangling part of L around the metal. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
X-ray crystal structure shows that 3,5-dimethyl-1-(2-nitrophenyl)-1H-pyrazole (DNP) belongs to the rare class of helically twisted synthetic organic molecules. Hydrogenation of DNP gives 2-(3,5-dimethylpyrazole-1-yl)phenylamine (L) which on methylation yields [2-(3,5-dimethylpyrazole-1-yl)phenyl]dimethylamine (L'). Two Pd(II) complexes, PdLCl2 (1) and PdL'Cl-2 (2), are synthesized and characterized by NMR. X-ray crystallography reveals that 1 and 2 are unprecedented square planar complexes which possess well discernible helical twists. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A ring-contractive and highly diastereoselective [2,3]-sigmatropic rearrangement occurs when N-methyl-1,2,3,6-tetrahydropyridine is treated with sub-stoichiometric amounts of copper or rhodium salts, in the presence of ethyl diazoacetate, giving ethyl cis-N-methyl-3-ethenyl proline (4).
Resumo:
One 3D and one 2D mu(1,5)-dicyanamide bridged Ni-II complexes having molecular formula [Ni(L1)(dca)(2)] (1) and [Ni-2(L-2)(2)(dca)(4)] (.) 0.5H(2)O (2) (L1 = 4-(2-aminoethyl)-morpholine, L2 = 1-(2-aminoethyl)-piperidine and dca = dicyanamide dianion) have been synthesized. X-ray single crystal analyses and low temperature magnetic measurements were used to characterize the complexes. Complex 1 represents a 3D structure where each metal ion is chelated by morpholine ligand (L1) and connected by four mu(1,5)-dca. Whereas complex 2 shows an undulated 2D structure with grid of (4,4) topology having two crystallographically independent Ni-II centers in similar octahedral environment where each metal center is chelated by one piperidine ligand (L2) and coordinated by four mu(1,5)-dca. Magnetic measurements of both the complexes indicate weak antiferromagnetic interactions through the mu-(1,5)-dca bridging ligands. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A 2D porous material, Cu-3(tmen)(3)(tma)(2)(H2O)(2)(.)6.5H(2)O [tmen = N,N,N',N'-tetramethylethane-1,2-diamine; tmaH(3) = 1,3,5-benzenetricarboxylic acid/trimesic acid], has been synthesized and characterized by X-ray single crystal analysis, variable temperature magnetic measurements, IR spectra and XRPD pattern. The complex consists of 2D layers built by three crystallographically independent Cu(tmen) moieties bridged by tma anions. Of the three copper ions, Cu(1) and Cu(2) present distorted square pyramidal coordination geometry, while the third exhibits a severely distorted octahedral environment. The Cu(1)(tmen) and Cu(2)(tmen) building blocks bridged by tma anions give rise to chains with a zig-zag motif, which are cross-connected by Cu(3)(tmen)-tma polymers sharing metal ions Cu(2) through pendant tma carboxylates. The resulting 2D architecture extends in the crystallographic ab-plane. The adjacent sheets are embedded through the Cu(3)(tmen) tma chains, leaving H2O-filled channels. There are 6.5 lattice water molecules per formula unit, some of which are disordered. Upon heating, the lattice water molecules get eliminated without destroying the crystal morphology and the compound rehydrated reversibly on exposure to humid atmosphere. Magnetic data of the complex have been fitted considering isolated irregular Cu-3 triangles (three different J parameters) by applying the CLUMAG program. The best fit indicates three close comparable J parameters and very weak antiferromagnetic interactions are operative between the metal centers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Three new metal-organic polymeric complexes, [Fe(N-3)(2)(bPP)(2)] (1), [Fe(N-3)(2)(bpe)] (2), and [Fe(N-3)(2)(phen)] (3) [bpp = (1,3-bis(4-pyridyl)-propane), bpe = (1,2-bis(4-pyridyl)-ethane), phen = 1,10-phenanthroline], have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature magnetic measurements in the range 300-2 K. Complexes 1 and 2 crystallize in the monoclinic system, space group C2/c, with the following cell parameters: a = 19.355(4) Angstrom, b = 7.076(2) Angstrom, c = 22.549(4) Angstrom, beta = 119.50(3)degrees, Z = 4, and a = 10.007(14) Angstrom, b = 13.789(18) Angstrom, c = 10.377(14) Angstrom, beta = 103.50(1)degrees, Z = 4, respectively. Complex 3 crystallizes in the triclinic system, space group P (1) over bar, with a = 7.155(12) Angstrom, b = 10.066(14) Angstrom, c = 10.508(14) Angstrom, alpha = 109.57(1)degrees, beta = 104.57(1)degrees, gamma = 105.10(1)degrees, and Z = 2. All coordination polymers exhibit octahedral Fe(II) nodes. The structural determination of 1 reveals a parallel interpenetrated structure of 2D layers of (4,4) topology, formed by Fe(II) nodes linked through bpp ligands, while mono-coordinated azide anions are pendant from the corrugated sheet. Complex 2 has a 2D arrangement constructed through 1D double end-to-end azide bridged iron(11) chains interconnected through bpe ligands. Complex 3 shows a polymeric arrangement where the metal ions are interlinked through pairs of end-on and end-to-end azide ligands exhibiting a zigzag arrangement of metals (Fe-Fe-Fe angle of 111.18degrees) and an intermetallic separation of 3.347 Angstrom (through the EO azide) and of 5.229 Angstrom (EE azide). Variable-temperature magnetic susceptibility data suggest that there is no magnetic interaction between the metal centers in 1, whereas in 2 there is an antiferromagnetic interaction through the end-to-end azide bridge. Complex 3 shows ferro- as well as anti-ferromagnetic interactions between the metal centers generated through the alternating end-on and end-to-end azide bridges. Complex I has been modeled using the D parameter (considering distorted octahedral Fe(II) geometry and with any possible J value equal to zero) and complex 2 has been modeled as a one-dimensional system with classical and/or quantum spin where we have used two possible full diagonalization processes: without and with the D parameter, considering the important distortions of the Fe(II) ions. For complex 3, the alternating coupling model impedes a mathematical solution for the modeling as classical spins. With quantum spin, the modeling has been made as in 2.
Resumo:
The mechanism of the Heck reaction has been studied with regard to transition metal catalysis of the addition of propene and the formation of unsaturated polymers. The reactivity of nickel and palladium complexes with five different bidentate ligands with O,N donor atoms has been investigated by computational methods involving density functional theory. Hence, it is possible to understand the electronic and steric factors affecting the reaction and their relative importance in determining the products formed in regard of their control of the regiochemistry of the products. Our results show that whether the initial addition of propene is trans to O or to N of the bidentate ligand is of crucial importance to the subsequent reactions. Thus when the propene is trans to 0, 1,2-insertion is favoured, but when the propene is trans to N, then 2,1-insertion is favoured. This difference in the preferred insertion pathway can be related to the charge distribution engendered in the propene moiety when the complex is formed. Indeed charge effects are important for catalytic activity but also for regioselectivity. Steric effects are shown to be of lesser importance even when t-butyl is introduced into the bidentate ligand as a substituent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Two octahedral complexes [Ni(HL1)(2)](ClO4)(2) (1) and [Ni(HL2)(2)](ClO4)(2) (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-buta n-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography: complexes 1 and 2 are seen to be the met isomers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2'-bipyridine, 2,2':6',2 ''-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH(2))(PPh3)(2)(CH3CN)I(ClO4)(2) center dot 2H(2)O (2), [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy)](ClO4)(2) (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy]ClO4)(2) (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t(2g) electrons are appreciably delocalized over the ligand backbone. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Three new ruthenium complexes of the formulae cis-[Ru(PPh3)(2)(BzTscbz)(2)] (1a), [Ru-2(PPh3)(2)(BzTscbz)(4)] (1b) and [Ru(PPh3)(2)(BzTscHbz)(2)](ClO4)(2) (2) [BzTscHbz = 4-(phenyl) thiosemicarbazone of benzaldehyde] have been synthesized and characterized by various physicochemical methods including X-ray structure determinations for 1a and 1b. The relative stabilities of the four-membered versus five-membered chelate rings formed by the deprotonated ligand BzTscbz are discussed on the basis of the experimental results and some semi-empirical as well as DFT calculations. (c) 2005 Elsevier Ltd. All rights reserved.