834 resultados para Collapsed objects and Supernovae
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.
Resumo:
The lack of viable methods to map and label existing infrastructure is one of the engineering grand challenges for the 21st century. For instance, over two thirds of the effort needed to geometrically model even simple infrastructure is spent on manually converting a cloud of points to a 3D model. The result is that few facilities today have a complete record of as-built information and that as-built models are not produced for the vast majority of new construction and retrofit projects. This leads to rework and design changes that can cost up to 10% of the installed costs. Automatically detecting building components could address this challenge. However, existing methods for detecting building components are not view and scale-invariant, or have only been validated in restricted scenarios that require a priori knowledge without considering occlusions. This leads to their constrained applicability in complex civil infrastructure scenes. In this paper, we test a pose-invariant method of labeling existing infrastructure. This method simultaneously detects objects and estimates their poses. It takes advantage of a recent novel formulation for object detection and customizes it to generic civil infrastructure scenes. Our preliminary experiments demonstrate that this method achieves convincing recognition results.
Resumo:
The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.
Resumo:
Current methods for formation of detected chess-board vertices into a grid structure tend to be weak in situations with a warped grid, and false and missing vertex-features. In this paper we present a highly robust, yet efficient, scheme suitable for inference of regular 2D square mesh structure from vertices recorded both during projection of a chess-board pattern onto 3D objects, and in the more simple case of camera calibration. Examples of the method's performance in a lung function measuring application, observing chess-boards projected on to patients' chests, are given. The method presented is resilient to significant surface deformation, and tolerates inexact vertex-feature detection. This robustness results from the scheme's novel exploitation of feature orientation information. © 2013 IEEE.
co-creativepen toolkit: a pen-based 3d toolkit for children cooperatly designing virtual environment
Resumo:
Co-CreativePen Toolkit is a pen-based 3D toolkit for children cooperatly designing virtual environment. This toolkit is used to construct different applications involved with distributedpen-based 3D interaction. In this toolkit,sketch method is encapsulated as kinds of interaction techniques. Children can use pen to construct 3D and IBR objects, to navigate in the virtual world, to select and manipulate virtual objects, and to communicate with other children. Children can use pen to select other children in the virtual world, and use pen to write message to children selected The distributed architecture of Co-CreativePen Toolkit is based on the CORBA. A common scene graph is managed in the server with several copies of this graph are managed in every client.Every changes of the scene graph in client will cause the change in the server and other client.
Resumo:
提出了一种基于双目视觉三维重建不确定性的环境动态特征滤除方法。针对利用立体视觉系统对机器人进行运动估计时,环境中的动态目标和环境静态背景与机器人的空间相对运动具有不一致性,将严重影响系统的精度的问题。根据动态目标与环境背景的空间运动不一致性,分析立体视觉三维重建的不确定性,利用重建的不确定性估计机器人与环境间的相对运动,通过随机一致性方法(RANSAC)滤除图像中的环境动态特征。仿真实验结果表明了本方法的可行性和有效性。
Resumo:
以模拟人对混水阀的调节过程为基础,提出一种新的仿人控制算法.该控制算法模拟人在控制时的粗调和微调,并使控制量逐步逼近最终稳定控制量的过程.算法中的参数具有明确的物理意义,可根据不同的控制指标方便地调节,并且能够获得足够的稳态误差.采用本文控制算法,不需要有精确的被控对象模型,即使在有较大干扰的情况下,仍可以获得较好的控制性能.
Resumo:
Rainbow三维摄像机是一种基于光谱分析的快速三维信息获取方法。该方法利用连续变化的彩色光谱照射景物 ,彩色CCD摄像机摄取的景物图像将呈现有规律的颜色变化 ,而且不同的颜色 (波长 )构成了不同的空间颜色面。通过标定这些颜色面和摄像机成象模型 ,即可计算出图像中各点的三维坐标。
Resumo:
Rainbow 三维摄像机是一种基于光谱分析的快速三维信息获取方法。该方法利用连续变化的彩色光谱照射景物,彩色CCD 摄像机摄取的景物图象将呈现有规律的颜色变化,而且不同的颜色(波长)构成了不同的空间颜色面。通过标定这些颜色面和摄像机成象模型,即可计算出图象中各点的三维坐标。该文重点讨论实现该方法的标定技术和颜色分类技术,最后给出实验结果。
Resumo:
本文介绍了三维物体识别及姿态测定的一种新技术,从物体空间域模型出发,通过约束推理及几何推理,在物体三维信息部分给定的条件下,推断预测图象模型,并通过实测的图象数据反馈,推断出隐含在图象中未给定的三维信息,最终实现三维物体识别及姿态测定。整个系统在VICOM机上用C语言完成。
Resumo:
The East Kunlun area of Xinjiang (briefly EKAX) is the western part of broadly speaking East Kunlun orogenic zone. The absence of geological data (especially ophiolites) on this area has constrained our recognition to its geology since many years. Fund by National 305 Item (96-915-06-03), this paper, by choosing the two ophiolite zones (Muztag and Southwestern Margin of Aqikekule Lake ophiolite zones) exposed at EKAX as the studied objects and by the analysis of thin section, electron probe, XRF, ICP-MS, SEM and Sm-Nd isotope, totally and sys ematically dealt with the field geological, petrological, minerological, petrochemical and geochemical characteristics (including trace, rare earth element and Sm-Nd isotope) and the tectonic setting indicated by them for each ophilite zone. Especially, this paper discussed the trace and rare earth element patterns for metamorphic peridotites, their implications and related them to the other components of ophiolite in order to totally disclose ophiolite origins. Besides, this paper also studied the petrological, geochemical and paleobiological characteristics for the cherts coexsisted with the Muztag ophiolite and the tectonic setting indicated by them. Based on these, the author discussed the tectonic evolution from Proterozoic to Permian for this area. For Muztag ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① outcropped along the Muztag-Jingyuhu fault with west-to-east strike, the ophiolite is composed of such three components as metamorphic peridotites, cumulates and volcanic rocks; ② metamophic peridotites consist of such types as lherzolites, serpentinized lherzolites and serpentinites, only pyroxenites is seen of cumulates and volcanic rocks include basalts, basaltic andesites and andesites; ③ mineralogical data on this ophiolite suggest it formed in supra-subduction zone (SSZ)environment, and its mantle wedge is heterogeneous; ④ whole-rock TiO_2 and Al_2O_3 of metamorphic peridotites indicate their original environment with the MORB and SSZ characteristics; ⑤ metamorphic peridotites have depleted LREE and flat REE patterns and volcanic rocks have enriched LREE patterns; ⑥ trace element characteristics of metamorphic peridotites imply that they had undergone Nb and Ta enrichment event after partial melting; ⑦ trace element characteristics of volcanic rocks and their tectonic diagrams show they are formed in the spreading and developed island arc environment with back-arc basin, such as rifted island arc, which is supported by the ε_(Nd)(t) -2.11~+3.44. In summary, the above evidence implies that Muztag ophiolite is formed in SSZ environment, where heterogeneous mantle wedge was metasomatised by the silica-enriched melt from subducted sediments and/or oceanic crust, which makes the mantle wedge enriched again, and this enriched mantle wedge later partially melted to form the volcanic rocks. For Southwestern Margin of Aqikekule Lake ophiolite, their field geological, petrological, minerological, petrochemical and geochemical characteristics show that: ① it outcropped as tectonic slices along the near west-to-east strike Kunzhong fault and is composed of metamorphic perodotties, cumulates and volcanic rocks, in which, chromites are distributed in the upper part of metamorphic peridotites as pods, or in the lower part of cumulates as near-strata; ② metamorphic peridotites include serpentinites, chromite-bearing serpentinites, thlorite-epidote schists and chromitites, of which, chromitites have nodular and orbicular structure, and cumulates include pyroxenits, serpentinites, chromite-bearing serpentinites, chromites and metamorphically mafic rocks and only basalts are seen in volcanic rocks; ③ Cr# of chromites suggest that they formed in the SSZ and Al_2O_3 and TiO_2 of metamorphic peridotites also suggest SSZ environment; ④metamorphic peridotites have V type and enriched LREE patterns, cumulates have from strongly depleted LREE, flat REE to enriched LREE patterns with universally striking positive Eu anomalies and basalts show flat REE or slight enriched LREE patterns with no Eu anomalies; ⑤ trace element and Sm-Nd isotope characteristics of metamorphic peridotites imply their strikingly heterogeneous mantle character(ε_(Nd)(t)+4.39~+26.20) and later Nb, Ta fertilization; ⑥ trace element characteristics of basalts and their tectonic diagrams show they probably formed in the rifted island arc or back-arc basin enviromnent. In summary, the above evidence shows that this ophiolite formed in the SSZ environment and melts from subudcted plate are joined during its formation. Rare earth element, whole-rock and sedimentary characteristics of cherts with the Muztag ophiolite show that they formed in the continental margin environment with developed back-arc basin, and radiolarias in the cherts indicate that the upper age of Muztag ophiolite is early carboniferous. Based on the accreted wedge models of Professor Li Jiliang for Kunlunshan Mountain and combined with study on the two typical ophiolite profiles of EKAX, the author discussed the tectonic evolution of EKAX from Proterzoic to Permian.
Resumo:
Reading is an important human-specific skill obtained through extensive learning experience and is reliance on the ability to rapidly recognize single words. According to the behavioral studies, the most important stage of reading is the representation of “visual word form”, which is independent on surface visual features of the reading materials. The prelexical visual word form representation is characterized by the abstractive and highly effective and precise processing. Neuroimaging and neuropsychological studies have investigated the neural basis underlying the visual word form processing. On the basis of summary of the existing literature, the current thesis aimed to address three fundamental questions involving neural basis of word recognition. First, is there a dedicated neural network that is specialized for word recognition? Second, is the orthographic information represented in the putative word/character selective region (VWFA)? Third, what is the role of reading experience in the genesis of the VWFA, is experience a main driver to shape VWFA instead of evolutionary selectivity? Nineteen Chinese literate volunteers, 5 Chinese illiterates and 4 native English speakers participated in this study, and performed perceptual tasks during fMRI scanning. To address the first question, we compared the differential responses to three categories of visual objects, i.e., faces, line drawings of objects and Chinese characters, and defined the region of interesting (ROI) for the next experiment. To address the second question, Chinese character orthography was manipulated to reveal possible differential responses to real characters, false characters, radical combinations, and stroke combinations in the regions defined by the first experiment. To examine the role of reading experience in genesis of specialization for character, the responses for unfamiliar Chinese characters in Chinese illiterates and native English speakers were compared with that in the Chinese literates, and tracked the change in cortical activation after a short-term reading training in the illiterates. Data were analyzed in two dimensions. Both BOLD signal amplitude and spatial distribution pattern among multi-voxels were used to systematically investigate the responsiveness of the left fusiform gyrus to Chinese characters. Our results provide strong and clear evidence for the existence of functionally specialized regions in the human ventral occipital-temporal cortex. In the skilled readers a region specialized for written words could be consistently found in the lateral part of the left fusiform gyrus, line drawings in the median part and faces in the middle. Our results further show that spatial distribution analysis, a method that was not commonly used in neuroimaging of reading, appears to be a more effective measurement for category specialization for visual objects processing. Although we failed to provide evidence that VWFA processes orthographic information in terms of signal intensitiy, we do show that response pattern of real characters and radical collections in this area is different from that of false characters and random stroke combinations. Our last set of experiments suggests that the selective bias to reading material is clearly experience dependent. The response to unknown characters in both English speakers/readers and Chinese illiterates is fundamentally different from that of the skilled Chinese readers. The response pattern for unknown characters is more similar to that for line drawings rather as a weak version of character in skilled Chinese readers. Short-term training is not sufficient to produce VWFA bias even when tested with learned characters, rather the learned characters generated a overall upward shift of the activation of the left fusiform region. Formation of a dedicated region specialized for visual word/character might depend on long-term extensive reading experience, or there might be a critical period for reading acquisition.
Resumo:
A number of functional neuroimaging studies with skilled readers consistently showed activation to visual words in the left mid-fusiform cortex in occipitotemporal sulcus (LMFC-OTS). Neuropsychological studies also showed that lesions at left ventral occipitotemporal areas result in impairment in visual word processing. Based on these empirical observations and some theoretical speculations, a few researchers postulated that the LMFC-OTS is responsible for instant parallel and holistic extraction of the abstract representation of letter strings, and labeled this piece of cortex as “visual word form area” (VWFA). Nonetheless, functional neuroimaging studies alone is basically a correlative rather than causal approach, and lesions in the previous studies were typically not constrained within LMFC-OTS but also involving other brain regions beyond this area. Given these limitations, it remains unanswered for three fundamental questions: is LMFC-OTS necessary for visual word processing? is this functionally selective for visual word processing while unnecessary for processing of non-visual word stimuli? what are its function properties in visual word processing? This thesis aimed to address these questions through a series of neuropsychological, anatomical and functional MRI experiments in four patients with different degrees of impairments in the left fusiform gyrus. Necessity: Detailed analysis of anatomical brain images revealed that the four patients had differential foci of brain infarction. Specifically, the LMFC-OTS was damaged in one patient, while it remained intact in the other three. Neuropsychological experiments showed that the patient with lesions in the LMFC-OTS had severe impairments in reading aloud and recognizing Chinese characters, i.e., pure alexia. The patient with intact LMFC-OTS but information from the left visual field (LVF) was blocked due to lesions in the splenium of corpus callosum, showed impairment in Chinese characters recognition when the stimuli were presented in the LVF but not in the RVF, i.e. left hemialexia. In contrast, the other two patients with intact LMFC-OTS had normal function in processing Chinese characters. The fMRI experiments demonstrated that there was no significant activation to Chinese characters in the LMFC-OTS of the pure alexic patient and of the patient with left hemialexia when the stimuli were presented in the LVF. On the other hand, this patient, when Chinese characters were presented in right visual field, and the other two with intact LMFC-OTS had activation in the LMFC-OTS. These results together point to the necessity of the LMFC-OTS for Chinese character processing. Selectivity: We tested selectivity of the LMFC-OTS for visual word processing through systematically examining the patients’ ability for processing visual vs. auditory words, and word vs. non-word visual stimuli, such as faces, objects and colors. Results showed that the pure alexic patients could normally process auditory words (expression, understanding and repetition of orally presented words) and non-word visual stimuli (faces, objects, colors and numbers). Although the patient showed some impairments in naming faces, objects and colors, his performance scores were only slightly lower or not significantly different relative to those of the patients with intact LMFC-OTS. These data provide compelling evidence that the LMFC-OTS is not requisite for processing non-visual word stimuli, thus has selectivity for visual word processing. Functional properties: With tasks involving multiple levels and aspects of word processing, including Chinese character reading, phonological judgment, semantic judgment, identity judgment of abstract visual word representation, lexical decision, perceptual judgment of visual word appearance, and dictation, copying, voluntary writing, etc., we attempted to reveal the most critical dysfunction caused by damage in the LMFC-OTS, thus to clarify the most essential function of this region. Results showed that in addition to dysfunctions in Chinese character reading, phonological and semantic judgment, the patient with lesions at LMFC-OTS failed to judge correctly whether two characters (including compound and simple characters) with different surface features (e.g., different fonts, printed vs. handwritten vs. calligraphy styles, simplified characters vs. traditional characters, different orientations of strokes or whole characters) had the same abstract representation. The patient initially showed severe impairments in processing both simple characters and compound characters. He could only copy a compound character in a stroke-by-stroke manner, but not by character-by-character or even by radical-by-radical manners. During the recovery process, namely five months later, the patient could complete the abstract representation tasks of simple characters, but showed no improvement for compound characters. However, he then could copy compound characters in a radical-by-radical manner. Furthermore, it seems that the recovery of copying paralleled to that of judgment of abstract representation. These observations indicate that lesions of the LMFC-OTS in the pure alexic patients caused several damage in the ability of extracting the abstract representation from lower level units to higher level units, and the patient had especial difficulty to extract the abstract representation of whole character from its secondary units (e.g., radicals or single characters) and this ability was resistant to recover from impairment. Therefore, the LMFC-OTS appears to be responsible for the multilevel (particularly higher levels) abstract representations of visual word form. Successful extraction seems independent on access to phonological and semantic information, given the alexic patient showed severe impairments in reading aloud and semantic processing on simple characters while maintenance of intact judgment on their abstract representation. However, it is also possible that the interaction between the abstract representation and its related information e.g. phonological and semantic information was damaged as well in this patient. Taken together, we conclude that: 1) the LMFC-OTS is necessary for Chinese character processing, 2) it is selective for Chinese character processing, and 3) its critical function is to extract multiple levels of abstract representation of visual word and possibly to transmit it to phonological and semantic systems.
Resumo:
This paper presents a new method of grouping edges in order to recognize objects. This grouping method succeeds on images of both two- and three- dimensional objects. So that the recognition system can consider first the collections of edges most likely to lead to the correct recognition of objects, we order groups of edges based on the likelihood that a single object produced them. The grouping module estimates this likelihood using the distance that separates edges and their relative orientation. This ordering greatly reduces the amount of computation required to locate objects and improves the system's robustness to error.
Resumo:
MIT SchMUSE (pronounced "shmooz") is a concurrent, distributed, delegation-based object-oriented interactive environment with persistent storage. It is designed to run in a "capricious" network environment, where servers can migrate from site to site and can regularly become unavailable. Our design introduces a new form of unique identifiers called "globally unique tickets" that provide globally unique time/space stamps for objects and classes without being location specific. Object location is achieved by a distributed hierarchical lazy lookup mechanism that we call "realm resolution." We also introduce a novel mechanism called "message deferral" for enhanced reliability in the face of remote delegation. We conclude with a comparison to related work and a projection of future work on MIT SchMUSE.