976 resultados para CMOS transistor
Resumo:
The influences of channel layer width, spacer layer width, and delta-doping density on the electron density and its distribution in the AlSb/InAs high electron mobility transistors (HEMTs) have been studied based on the self-consistent calculation of the Schrodinger and Poisson equations with both the strain and nonparabolicity effects being taken into account. The results show that, having little influence on the total two dimensional electron gas (2DEG) concentration in the channel, the HEMT's channel layer width has some influence on the electron mobility, with a channel as narrow as 100-130 angstrom being more beneficial. For the AlSb/InAs HEMT with a Te delta-doped layer, the 2DEG concentration as high as 9.1 X 10(12) cm(-2) can be achieved in the channel by enhancing the delta-doping concentration without the occurrence of the parallel conduction. When utilizing a Si delta-doped InAs layer as the electron-supplying layer of the AlSb/InAs HEMT, the effect of the InAs donor layer thickness is studied on the 2DEG concentration. To obtain a higher 2DEG concentration in the channel, it is necessary to use an InAs donor layer as thin as 4 monolayer. To test the validity of our calculation, we have compared our theoretical results (2DEG concentration and its distribution in different sub-bands of the channel) with the experimental ones done by other groups and show that our theoretical calculation is consistent with the experimental results.
Resumo:
Three causes involved in the instability of the ISFET are proposed in this study. First, it is ascertained that hydroxyl group resident at the surface of the Si3N4 film or in the electrolyte solution is most active and subject to gain or loss of electrons. This is one of the main causes for ISFET structural instability. Secondly, the stability of the pH-sensitive FET varies with deposition conditions in the fabrication process of the ISFET. This proves to be another cause of ISFET instability. Thirdly, the pH of the measured solution varies with the measuring process and time, contributing to the instability, but is not a cause of the instability of the pH-ISFET itself. We utilized the technique of readjusting and controlling the ratio of hydroxyl groups to amine groups to enhance the stability of the ISFET. Our techniques to improve stability characteristics proved to be effective in practice.
Resumo:
This paper proposes a novel noise optimization technique. The technique gives analytical formulae for the noise performance of inductively degenerated CMOS low noise amplifier (LNA) circuits with an ideal gate inductor for a fixed bias voltage and nonideal gate inductor for a fixed power dissipation, respectively, by mathematical analysis and reasonable approximation methods. LNA circuits with required noise figure can be designed effectively and rapidly just by using hand calculations of the proposed formulae. We design a 1.8 GHz LNA in a TSMC 0.25 pan CMOS process. The measured results show a noise figure of 1.6 dB with a forward gain of 14.4 dB at a power consumption of 5 mW, demonstrating that the designed LNA circuits can achieve low noise figure levels at low power dissipation.
Resumo:
A zero-pole cancellation transimpedance amplifier (TIA) has been realized in 0.35 μm RF CMOS tech nology for Gigabit Ethernet applications. The TIA exploits a zero-pole cancellation configuration to isolate the input parasitic capacitance including photodiode capacitance from bandwidth deterioration. Simulation results show that the proposed TIA has a bandwidth of 1.9 GHz and a transimpedance gain of 65 dB·Ω for 1.5 pF photodiode capaci tance, with a gain-bandwidth product of 3.4 THz·Ω. Even with 2 pF photodiode capacitance, the bandwidth exhibits a decline of only 300 MHz, confirming the mechanism of the zero-pole cancellation configuration. The input resis tance is 50 Ω, and the average input noise current spectral density is 9.7 pA/(Hz)~(1/2). Testing results shows that the eye diagram at 1 Gb/s is wide open. The chip dissipates 17 mW under a single 3.3 V supply.