921 resultados para 091006 Manufacturing Processes and Technologies (excl. Textiles)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cleaner technologies include products, services, technologies, processes and systems that in use create less environmental hazard than the existing alternatives. Rapidly growing cleantech sector possesses an essential competitive advantage in the future. However, no profound research has been conducted on the characteristics of cleaner technologies and their effect on the commercialization process. This thesis aims at synthesizing scattered information and creating a basis for accelerating cleaner technology commercialization in Finnish context. Two research questions are defined: 1. What are the key challenges and success factors in the commercialization of cleaner technologies based on the existing literature? 2. What kind of lessons can be learned from the Finnish success stories of cleantech commercialization? The research was conducted as a literature review and supported with three case interviews. The results suggest that literature-based challenges are mostly related to, for example, difficulty in gathering customer information, unrealistic customer expectations, lack of resources, networks and proper success indicators, legislation, and unstructured strategy planning stemming from company culture. Handling the barriers require, above all, open communication from all stakeholders, management commitment and accurate goal setting, government-driven funding and incentives, and cooperation with educational facilities. Finnish success cases emphasize especially customer attention: listening to customers and receiving feedback from them during the whole commercialization process to correct the errors early and save resources, visionary in fulfilling customer needs, ability to question company’s own business performance, not being afraid of making mistakes but learning from them, and continuously observing and evaluating the commercialization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies the advantages, disadvantages and possibilities of additive manufacturing in making components with internal flow channels. These include hydraulic components, components with cooling channels and heat exchangers. Processes studied in this work are selective laser sintering and selective laser melting of metallic materials. The basic principles of processes and parameters involved in the process are presented and different possibilities of internal channel manufacturing and flow improvement are introduced

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study uses the Life Cycle Assessment (LCA) methodology to evaluate and compare the environmental impacts caused by both the artisanal and the industrial manufacturing processes of "Minas cheese". This is a traditional cheese produced in the state of Minas Gerais (Brazil), and it is considered a "cultural patrimony" in the country. The high participation of artisanal producers in the market justifies this research, and this analysis can help the identification of opportunities to improve the environmental performance of several stages of the production system. The environmental impacts caused were also assessed and compared. The functional unit adopted was 1 kilogram (Kg) of cheese. The system boundaries considered were the production process, conservation of product (before sale), and transport to consumer market. The milk production process was considered similar in both cases, and therefore it was not included in the assessment. The data were collected through interviews with the producers, observation, and a literature review; they were ordered and processed using the SimaPro 7 LCA software. According to the impact categories analyzed, the artisanal production exerted lower environmental impacts. This can be justified mainly because the industrial process includes the pasteurization stage, which uses dry wood as an energy source and refrigeration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research is to create a current state analysis of pulp supply chain processes from production planning to deliveries to customers. A cross-functional flowchart is being used to model these processes. These models help finding key performance indicators (KPIs) which enable examinations of the supply chain efficiency. Supply chain measures in different processes reveal the changes need processes that affect the whole supply chain and its efficiency and competitiveness. Structure of pulp supply chain differs from most of the other supply chains. The fact that there are big volumes of bulk products, small product variations and supply forecasts are made for the year ahead make the difference. This factor brings different benefits but also challenges when developing supply chain. This thesis divides pulp supply chain in three different main categories: production planning, warehousing and transportation. It provides tools for estimating the functionality of supply chain as well as developing the efficiency for different functions of supply chain. By having a better understanding of supply chain processes and measurement the whole supply chain structure can be developed significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to find out how laser based Directed Energy Deposition processes can benefit from different types of monitoring. DED is a type of additive manufacturing process, where parts are manufactured in layers by using metallic powder or metallic wire. DED processes can be used to manufacture parts that are not possible to manufacture with conventional manufacturing processes, when adding new geometries to existing parts or when wanting to minimize the scrap material that would result from machining the part. The aim of this study is to find out why laser based DED-processes are monitored, how they are monitored and what devices are used for monitoring. This study has been done in the form of a literature review. During the manufacturing process, the DED-process is highly sensitive to different disturbances such as fluctuations in laser absorption, powder feed rate, temperature, humidity or the reflectivity of the melt pool. These fluctuations can cause fluctuations in the size of the melt pool or its temperature. The variations in the size of the melt pool have an effect on the thickness of individual layers, which have a direct impact on the final surface quality and dimensional accuracy of the parts. By collecting data from these fluctuations and adjusting the laser power in real-time, the size of the melt pool and its temperature can be kept within a specified range that leads to significant improvements in the manufacturing quality. The main areas of monitoring can be divided into the monitoring of the powder feed rate, the temperature of the melt pool, the height of the melt pool and the geometry of the melt pool. Monitoring the powder feed rate is important when depositing different material compositions. Monitoring the temperature of the melt pool can give information about the microstructure and mechanical properties of the part. Monitoring the height and the geometry of the melt pool is an important factor in achieving the desired dimensional accuracy of the part. By combining multiple different monitoring devices, the amount of fluctuations that can be controlled will be increased. In addition, by combining additive manufacturing with machining, the benefits of both processes could be utilized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La millora de la productivitat i la qualitat són indubtablement dues de les principals exigències del sector productiu modern i factors clau per la competitivitat i la supervivència. Dins aquest sector,la fabricació per arrancada de material juga encara avui en dia un paper protagonista tot i l'aparició de noves tècniques de conformat per addició.Indústries com l'aeronàutica, l'automobilística,la del motlle o l'energètica, depenen en bona part de les prestacions de les màquines-eina. Aquesta Tesi aborda dos aspectes rellevants quan es tracta de millorar de la productivitat i la qualitat del sector productiu: el problema del fimbrament, més conegut per la denominació anglosaxona chatter,i la monitorització de la rugositat superficial en el mecanitzat a alta velocitat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis reports on car fluff management, recycling and recovery. Car fluff is the residual waste produced by car recycling operations, particularly from hulk shredding. Car fluff is known also as Automotive Shredder Residue (ASR) and it is made of plastics, rubbers, textiles, metals and other materials, and it is very heterogeneous both in its composition and in its particle size. In fact, fines may amount to about 50%, making difficult to sort out recyclable materials or exploit ASR heat value by energy recovery. This 3 years long study started with the definition of the Italian End-of-Life Vehicles (ELVs) recycling state of the art. A national recycling trial revealed Italian recycling rate to be around 81% in 2008, while European Community recycling target are set to 85% by 2015. Consequently, according to Industrial Ecology framework, a life cycle assessment (LCA) has been conducted revealing that sorting and recycling polymers and metals contained in car fluff, followed by recovering residual energy, is the route which has the best environmental perspective. This results led the second year investigation that involved pyrolysis trials on pretreated ASR fractions aimed at investigating which processes could be suitable for an industrial scale ASR treatment plant. Sieving followed by floatation reported good result in thermochemical conversion of polymers with polyolefins giving excellent conversion rate. This factor triggered ecodesign considerations. Ecodesign, together with LCA, is one of the Industrial Ecology pillars and it consists of design for recycling and design for disassembly, both aimed at the improvement of car components dismantling speed and the substitution of non recyclable material. Finally, during the last year, innovative plants and technologies for metals recovery from car fluff have been visited and tested worldwide in order to design a new car fluff treatment plant aimed at ASR energy and material recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.