934 resultados para the parabolized stability equations (PSE)
Resumo:
The thesis presents a theoretical and practical study of the dynamic behaviour of electromagnetic relays. After discussing the problem of solving the dynamicc equations analytically and presenting a historical survey of the earlier works in the relay and its dynamics, the simulation of a relay on the analogue computer is discussed. It is shown that the simulation may be used to obtain specific solutions to the dynamic equations. The computer analysis provides the dynamic characteristics for design purposes and may be used in the study of bouncing, rebound oscillations and stability of the armature motion. An approximate analytical solution to the two dynamic equations is given based on the assumption that the dynamic variation of the pull with the position of the armature is linear. The assumption is supported by the Computer-aided analysis and experimental results. The solution is intended to provide a basis for a rational design. A rigorous method of analysing the dynamic performance by using Ahlberg's theory is also presented. This method may be justified to be the extension of Ahlberg's theory by taking the mass and frictional damping forces into account. While calculating the armature motion mathematically, Ahlberg considers the equilibrium of two kinds of forces, namely pull and load, and disregards the mass and friction forces, whereas the present method deals with the equilibrium of all four kinds of forces. It is shown how this can be utilised to calculate the dynamic characteristics for a specific design. The utility of this method also extends to the study of stability, contact bounce and armature rebound. The magnetic circuit and other related topics which are essential to the study of relay dynamics are discussed and some necessary experimental results are given.
Resumo:
The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa. ©2005 The Physical Society of Japan.
Resumo:
MSC 2010: 26A33, 44A45, 44A40, 65J10
Resumo:
2000 Mathematics Subject Classification: 35B35, 35B40, 35Q35, 76B25, 76E30.
Resumo:
2000 Mathematics Subject Classification: 60G52, 90B30.
Resumo:
Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500-600 °C. In this study a mild detemplation method based on the oxidative Fenton chemistry has been investigated. The Fenton reaction involves the generation of OH radicals following a redox Fe3+/Fe2+ cycle that is used as catalyst and H2O2 as oxidant source. Improved material properties are anticipated since the Fenton chemistry comprises milder conditions than calcination. However, the general application of this methodology is not straightforward due to limitations in the hydrothermal stability of the particular system under study. The objective of this work is three-fold: 1) reducing the residual Fe in the resulting solid as this can be detrimental for the application of the material, 2) shortening the reaction time by optimizing the reaction temperature to minimize possible particle agglomeration, and finally 3) investigating the structural and textural properties of the resulting material in comparison to the calcined counterparts. It appears that the Fenton detemplation can be optimized by shortening the reaction time significantly at low Fe concentration. The milder conditions of detemplation give rise to enhanced properties in terms of surface area, pore volume, structural preservation, low Fe residue and high degree of surface hydroxylation; the colloidal particles are stable during storage. A relative particle size increase, expressed as 0.11%·h-1, has been determined.
Resumo:
Relevant carbon-based materials, home-made carbon-silica hybrids, commercial activated carbon, and nanostructured multi-walled carbon nanotubes (MWCNT) were tested in the oxidative dehydrogenation of ethylbenzene (EB). Special attention was given to the reaction conditions, using a relatively concentrated EB feed (10 vol.% EB), and limited excess of O2 (O 2:EB = 0.6) in order to work at full oxygen conversion and consequently avoid O2 in the downstream processing and recycle streams. The temperature was varied between 425 and 475 °C, that is about 150-200 °C lower than that of the commercial steam dehydrogenation process. The stability was evaluated from runs of 60 h time on stream. Under the applied reactions conditions, all the carbon-based materials are apparently stable in the first 15 h time on stream. The effect of the gasification/burning was significantly visible only after this period where most of them fully decomposes. The carbon of the hybrids decomposes completely rendering the silica matrix and the activated carbon bed is fully consumed. Nano structured MWCNT is the most stable; the structure resists the demanding reaction conditions showing an EB conversion of ∼30% (but deactivating) with a steady selectivity of ∼80%. The catalyst stability under the ODH reaction conditions is predicted from the combustion apparent activation energies. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Az x''+f(x) x'+g(x) = 0 alakú Liénard-típusú differenciálegyenlet központi szerepet játszik az üzleti ciklusok Káldor-Kalecki-féle [3,4] és Goodwin-féle [2] modelljeiben, sőt egy a munkanélküliség és vállalkozás-ösztönzések ciklikus változásait leíró újabb modellben [1] is. De ugyanez a nemlineáris egyenlettípus a gerjesztett ingák és elektromos rezgőkörök elméletét is felöleli [5]. Az ezzel kapcsolatos irodalom nagyrészt a határciklusok létezését vizsgálja (pl. [5]), pedig az alapvető stabilitási kérdések jóval áttekinthetőbb módon kezelhetők, s a kapott eredmények közvetve a határciklusok létezésének feltételeit is sokkal jobban be tudják határolni. Jelen dolgozatban az egyváltozós analízis hatékony nyelvezetével olyan egyszerűen megfogalmazható eredményekhez jutunk, amelyek képesek kitágítani az üzleti és más közgazdasági ciklusok modelljeinek kereteit, illetve pl. az [1]-beli modellhez újabb szemléltető speciális eseteket is nyerünk. ____ The Liénard type differential equation of the form x00 + f(x) ¢ x0 + g(x) = 0 has a central role in business cycle models by Káldor [3], Kalecki [4] and Goodwin [2], moreover in a new model describing the cyclical behavior of unemployment and entrepreneurship [1]. The same type of nonlinear equation explains the features of forced pendulums and electric circuits [5]. The related literature discusses mainly the existence of limit cycles, although the fundamental stability questions of this topic can be managed much more easily. The achieved results also outline the conditions for the existence of limit cycles. In this work, by the effective language of real valued analysis, we obtain easy-formulated results which may broaden the frames of economic and business cycle models, moreover we may gain new illustrative particular cases for e.g., [1].
Resumo:
The paper intends to give an insight into the relations of the economic and political systems of the Central Asian republics using the theoretical framework of the "rentier economy" and "rentier state" approach. The main findings of the paper are that two (Kazakhstan and Turkmenistan) of the five states examined are commodity export dependent “full-scale” rentier states. The two political systems are of a stable neo-patrimonial regime character, while the Kyrgyz Republic and Tajikistan, poor in natural resources but dependent on external rents, may be described as "semi-rentier" states or "rentier economies". They are politically more instable, but have an altogether authoritarian, oligarchical “clan-based” character. Uzbekistan with its closed economy, showing tendencies of economic autarchy, is also a potentially politically unstable clan-based regime. Thus, in the Central Asian context, the rentier state or rentier economy character affects the political stability of the actual regimes rather than having a direct impact on whether power is exercised in an autocratic or democratic way.
Resumo:
The primary purpose of this study was to investigate agreement among five equations by which clinicians estimate water requirements (EWR) and to determine how well these equations predict total water intake (TWI). The Institute of Medicine has used TWI as a measure of water requirements. A secondary goal of this study was to develop practical equations to predict TWI. These equations could then be considered accurate predictors of an individual’s water requirement. ^ Regressions were performed to determine agreement between the five equations and between the five equations and TWI using NHANES 1999–2004. The criteria for agreement was (1) strong correlation coefficients between all comparisons and (2) regression line that was not significantly different when compared to the line of equality (x=y) i.e., the 95% CI of the slope and intercept must include one and zero, respectively. Correlations were performed to determine association between fat-free mass (FFM) and TWI. Clinically significant variables were selected to build equations for predicting TWI. All analyses were performed with SAS software and were weighted to account for the complex survey design and for oversampling. ^ Results showed that the five EWR equations were strongly correlated but did not agree with each other. Further, the EWR equations were all weakly associated to TWI and lacked agreement with TWI. The strongest agreement between the NRC equation and TWI explained only 8.1% of the variability of TWI. Fat-free mass was positively correlated to TWI. Two models were created to predict TWI. Both models included the variables, race/ethnicity, kcals, age, and height, but one model also included FFM and gender. The other model included BMI and osmolality. Neither model accounted for more than 28% of the variability of TWI. These results provide evidence that estimates of water requirements would vary depending upon which EWR equation was selected by the clinician. None of the existing EWR equations predicted TWI, nor could a prediction equation be created which explained a satisfactory amount of variance in TWI. A good estimate of water requirements may not be predicted by TWI. Future research should focus on using more valid measures to predict water requirements.^
Resumo:
Despite recent advances in ocean observing arrays and satellite sensors, there remains great uncertainty in the large-scale spatial variations of upper ocean salinity on the interannual to decadal timescales. Consonant with both broad-scale surface warming and the amplification of the global hydrological cycle, observed global multidecadal salinity changes typically have focussed on the linear response to anthropogenic forcing but not on salinity variations due to changes in the static stability and or variability due to the intrinsic ocean or internal climate processes. Here, we examine the static stability and spatiotemporal variability of upper ocean salinity across a hierarchy of models and reanalyses. In particular, we partition the variance into time bands via application of singular spectral analysis, considering sea surface salinity (SSS), the Brunt Väisälä frequency (N2), and the ocean salinity stratification in terms of the stabilizing effect due to the haline part of N2 over the upper 500m. We identify regions of significant coherent SSS variability, either intrinsic to the ocean or in response to the interannually varying atmosphere. Based on consistency across models (CMIP5 and forced experiments) and reanalyses, we identify the stabilizing role of salinity in the tropics—typically associated with heavy precipitation and barrier layer formation, and the role of salinity in destabilizing upper ocean stratification in the subtropical regions where large-scale density compensation typically occurs.
Resumo:
This paper describes the preparation of poly(DL-lactide-co-glicolide) (PLGA) nanocapsules as a drug carrier system for the local anesthetic bupivacaine. The system was characterized and its stability investigated. The results showed a size distribution with a polydispersity index of 0.12, an average diameter of 148 nm, a zeta potential of -43.5 mV and an entrapment efficiency of 75.8%. The physicochemical properties of polymeric nanocapsule suspensions (average diameter, polydispersity, zeta potential and drug association efficiency) were evaluated as a function of time to determine the formulation stability. The formulation did not display major changes in these properties over the time, and it was considered stable up to 120 days of storage at room temperature. The results reported here which refer to the initial characterization of these new formulations for the local anesthetic bupivacaine show a promising potential for future in vivo studies.
Resumo:
In this work, we perform an asymptotic analysis of a coupled system of two Advection-Diffusion-Reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacterias), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the method of linearization to give sufficient conditions for the asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.
Resumo:
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at the macroscopic scale. The classical model is a PDE description known as the Navier-Stokes equations. The behavior of solutions is notoriously complex, leading many in the scientific community to describe fluid mechanics using a statistical language. In the physics literature, this is often done in an ad-hoc manner with limited precision about the sense in which the randomness enters the evolution equation. The stochastic PDE community has begun proposing precise models, where a random perturbation appears explicitly in the evolution equation. Although this has been an active area of study in recent years, the existing literature is almost entirely devoted to incompressible fluids. The purpose of this thesis is to take a step forward in addressing this statistical perspective in the setting of compressible fluids. In particular, we study the well posedness for the corresponding system of Stochastic Navier Stokes equations, satisfied by the density, velocity, and temperature. The evolution of the momentum involves a random forcing which is Brownian in time and colored in space. We allow for multiplicative noise, meaning that spatial correlations may depend locally on the fluid variables. Our main result is a proof of global existence of weak martingale solutions to the Cauchy problem set within a bounded domain, emanating from large initial datum. The proof involves a mix of deterministic and stochastic analysis tools. Fundamentally, the approach is based on weak compactness techniques from the deterministic theory combined with martingale methods. Four layers of approximate stochastic PDE's are built and analyzed. A careful study of the probability laws of our approximating sequences is required. We prove appropriate tightness results and appeal to a recent generalization of the Skorohod theorem. This ultimately allows us to deduce analogues of the weak compactness tools of Lions and Feireisl, appropriately interpreted in the stochastic setting.
Resumo:
The milling of thin parts is a high added value operation where the machinist has to face the chatter problem. The study of the stability of these operations is a complex task due to the changing modal parameters as the part loses mass during the machining and the complex shape of the tools that are used. The present work proposes a methodology for chatter avoidance in the milling of flexible thin floors with a bull-nose end mill. First, a stability model for the milling of compliant systems in the tool axis direction with bull-nose end mills is presented. The contribution is the averaging method used to be able to use a linear model to predict the stability of the operation. Then, the procedure for the calculation of stability diagrams for the milling of thin floors is presented. The method is based on the estimation of the modal parameters of the part and the corresponding stability lobes during the machining. As in thin floor milling the depth of cut is already defined by the floor thickness previous to milling, the use of stability diagrams that relate the tool position along the tool-path with the spindle speed is proposed. Hence, the sequence of spindle speeds that the tool must have during the milling can be selected. Finally, this methodology has been validated by means of experimental tests.