Asymptotic stability of a coupled Advection-Diffusion-Reaction system arising in bioreactor processes.


Autoria(s): Crespo Moya, María; Ramos del Olmo, Ángel Manuel; Ivorra, Benjamin
Data(s)

18/10/2016

Resumo

In this work, we perform an asymptotic analysis of a coupled system of two Advection-Diffusion-Reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacterias), called biomass, and a diluted organic contaminant (e.g., nitrates), called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the method of linearization to give sufficient conditions for the asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

Formato

application/pdf

Identificador

http://eprints.ucm.es/39501/1/Octubre18-eprintUCM.pdf

Idioma(s)

en

Relação

http://eprints.ucm.es/39501/

MTM2011-22658

MTM2015-64865-P

Ref. 910480

P12-TIC301

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Análisis matemático #Análisis numérico
Tipo

info:eu-repo/semantics/article

NonPeerReviewed