872 resultados para structural magnetic resonance imaging (sMRI)
Resumo:
We studied the relationship between corpus callosum area and both inter-hemispheric facilitation and interference in schizophrenics and controls. Mid-sagittal sections through the corpus callosum were measured using structural magnetic resonance imaging on 42 patients and 43 normal controls, along with symptom profiles. In a sub-sample, a modified version of the Stroop Test was also performed (27 patients and 29 controls) to assess inter-hemispheric facilitation and interference of colour naming. In the larger sample (total subjects, n=85), there were no significant differences between patients and controls in CC area but a trend towards smaller values in patients in all but the posterior segment. In the sub-sample, bilateral facilitation was greater, and interference, less in schizophrenics compared with controls. There was a positive correlation between facilitation and posterior CC area, parallelled by a negative correlation between interference and posterior CC area, in both patients and controls, which only reached statistical significance when both groups were combined. These findings suggest that the link, between CC size and neuropsychological processes involving inter-hemispheric transfer of information, is common to both schizophrenics and normal controls. There were significant negative correlations between anterior CC area and psychomotor poverty (avolition, anhedonia and affective flattening), and a suggestion that the negative correlation between age and CC size in controls was not present in patients.
Resumo:
Individual differences in cognitive style can be characterized along two dimensions: ‘systemizing’ (S, the drive to analyze or build ‘rule-based’ systems) and ‘empathizing’ (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S > E) or the other (E > S) are associated with sex differences in cognition: on average more males show an S > E cognitive style, while on average more females show an E > S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S > E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E > S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style.
Resumo:
Serotonin reuptake inhibitors and cognitive-behavior therapy (CBT) are considered first-line treatments for obsessive-compulsive disorder (OCD). However, little is known about their modulatory effects on regional brain morphology in OCD patients. We sought to document structural brain abnormalities in treatment-naive OCD patients and to determine the effects of pharmacological and cognitive-behavioral treatments on regional brain volumes. Treatment-naive patients with OCD (n = 38) underwent structural magnetic resonance imaging scan before and after a 12-week randomized clinical trial with either fluoxetine or group CBT. Matched-healthy controls (n = 36) were also scanned at baseline. Voxel-based morphometry was used to compare regional gray matter (GM) volumes of regions of interest (ROIs) placed in the orbitofrontal, anterior cingulate and temporolimbic cortices, striatum, and thalamus. Treatment-naive OCD patients presented smaller GM volume in the left putamen, bilateral medial orbitofrontal, and left anterior cingulate cortices than did controls (p<0.05, corrected for multiple comparisons). After treatment with either fluoxetine or CBT (n = 26), GM volume abnormalities in the left putamen were no longer detectable relative to controls. ROI-based within-group comparisons revealed that GM volume in the left putamen significantly increased (p<0.012) in fluoxetine-treated patients (n = 13), whereas no significant GM volume changes were observed in CBT-treated patients (n = 13). This study supports the involvement of orbitofronto/cingulo-striatal loops in the pathophysiology of OCD and suggests that fluoxetine and CBT may have distinct neurobiological mechanisms of action. Neuropsychopharmacology (2012) 37, 734-745; doi: 10.1038/npp.2011.250; published online 26 October 2011
Resumo:
A 21-year-old female with Fabry's disease (FD) presented acute psychotic symptoms such as delusions, auditory hallucinations and formal thought disorders. Since the age of 14, she had suffered from various psychiatric symptoms increasing in frequency and intensity. We considered the differential diagnoses of prodromal symptoms of schizophrenia and organic schizophrenia-like disorder. Routine examinations including cognitive testing, electroencephalography and structural magnetic resonance imaging revealed no pathological findings. Additional structural and functional imaging demonstrated a minor CNS involvement of FD, yet without functional limitations. In summary our examination results support the thesis that in the case of our patient a mere coincidence of FD and psychotic symptoms is more likely than a causal connection.
Resumo:
BACKGROUND: The origin of auditory hallucinations, which are one of the core symptoms of schizophrenia, is still a matter of debate. It has been hypothesized that alterations in connectivity between frontal and parietotemporal speech-related areas might contribute to the pathogenesis of auditory hallucinations. These networks are assumed to become dysfunctional during the generation and monitoring of inner speech. Magnetic resonance diffusion tensor imaging is a relatively new in vivo method to investigate the directionality of cortical white matter tracts. OBJECTIVE: To investigate, using diffusion tensor imaging, whether previously described abnormal activation patterns observed during auditory hallucinations relate to changes in structural interconnections between the frontal and parietotemporal speech-related areas. METHODS: A 1.5 T magnetic resonance scanner was used to acquire twelve 5-mm slices covering the Sylvian fissure. Fractional anisotropy was assessed in 13 patients prone to auditory hallucinations, in 13 patients without auditory hallucinations, and in 13 healthy control subjects. Structural magnetic resonance imaging was conducted in the same session. Based on an analysis of variance, areas with significantly different fractional anisotropy values between groups were selected for a confirmatory region of interest analysis. Additionally, descriptive voxel-based t tests between the groups were computed. RESULTS: In patients with hallucinations, we found significantly higher white matter directionality in the lateral parts of the temporoparietal section of the arcuate fasciculus and in parts of the anterior corpus callosum compared with control subjects and patients without hallucinations. Comparing patients with hallucinations with patients without hallucinations, we found significant differences most pronounced in the left hemispheric fiber tracts, including the cingulate bundle. CONCLUSION: Our findings suggest that during inner speech, the alterations of white matter fiber tracts in patients with frequent hallucinations lead to abnormal coactivation in regions related to the acoustical processing of external stimuli. This abnormal activation may account for the patients' inability to distinguish self-generated thoughts from external stimulation.
Resumo:
Objectives: Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data. Methods: We used a novel analytic framework to examine the extent to which unipolar and bipolar depressed individuals differed on discrimination between patterns of neural activity for happy and neutral faces. We used data from 18 currently depressed individuals with bipolar I disorder (BD) and 18 currently depressed individuals with recurrent unipolar depression (UD), matched on depression severity, age, and illness duration, and 18 age- and gender ratio-matched healthy comparison subjects (HC). fMRI data were analyzed using a general linear model and Gaussian process classifiers. Results: The accuracy for discriminating between patterns of neural activity for happy versus neutral faces overall was lower in both patient groups relative to HC. The predictive probabilities for intense and mild happy faces were higher in HC than in BD, and for mild happy faces were higher in HC than UD (all p < 0.001). Interestingly, the predictive probability for intense happy faces was significantly higher in UD than BD (p = 0.03). Conclusions: These results indicate that patterns of whole-brain neural activity to intense happy faces were significantly less distinct from those for neutral faces in BD than in either HC or UD. These findings indicate that pattern recognition approaches can be used to identify abnormal brain activity patterns in patient populations and have promising clinical utility as techniques that can help to discriminate between patients with different psychiatric illnesses.
Resumo:
Des études récentes ont rapporté que les individus âgés avec un trouble cognitif léger (TCL) ont de plus grandes activations en lien avec la réalisation d’une tâche cognitive que des personnes âgées saines. Des auteurs ont proposé que ces hyperactivations pourraient refléter des processus de plasticité cérébrale compensatoires ayant lieu pendant la phase précoce de la maladie d’Alzheimer. Des processus de compensations fonctionnelles pourraient émerger en réponse à une perte d’intégrité structurelle dans les régions du cerveau normalement requises pour compléter une tâche. Dans ce mémoire, j’ai évalué cette hypothèse chez des personnes avec TCL en faisant appel à une tâche de mémoire de travail comportant plusieurs niveaux de difficulté ainsi qu’aux techniques d’imagerie par résonnance magnétique (IRM) structurelle et fonctionnelle. Des analyses de régression multiples ont été utilisées afin d’identifier les régions cérébrales dont l’activité variait en fonction de l’intégrité neuronale telle que définie par le volume de l’hippocampe. Les valeurs estimées des paramètres du signal de ces régions furent ensuite extraites afin de procéder à des analyses corrélationnelles sur la performance ainsi que sur le volume de différentes structures cérébrales. Les résultats indiquent des hyperactivations dans les régions frontales droites chez les participants TCL souffrant d’une plus grande atteinte neuronale. De plus, le niveau d’activation est négativement corrélé au volume de structures frontales et pariétales. Ces résultats indique la présence d’une hyperactivation compensatoire dans la phase du TCL associée à la réalisation d’une tâche de mémoire de travail.
Resumo:
Des études récentes ont rapporté que les individus âgés avec un trouble cognitif léger (TCL) ont de plus grandes activations en lien avec la réalisation d’une tâche cognitive que des personnes âgées saines. Des auteurs ont proposé que ces hyperactivations pourraient refléter des processus de plasticité cérébrale compensatoires ayant lieu pendant la phase précoce de la maladie d’Alzheimer. Des processus de compensations fonctionnelles pourraient émerger en réponse à une perte d’intégrité structurelle dans les régions du cerveau normalement requises pour compléter une tâche. Dans ce mémoire, j’ai évalué cette hypothèse chez des personnes avec TCL en faisant appel à une tâche de mémoire de travail comportant plusieurs niveaux de difficulté ainsi qu’aux techniques d’imagerie par résonnance magnétique (IRM) structurelle et fonctionnelle. Des analyses de régression multiples ont été utilisées afin d’identifier les régions cérébrales dont l’activité variait en fonction de l’intégrité neuronale telle que définie par le volume de l’hippocampe. Les valeurs estimées des paramètres du signal de ces régions furent ensuite extraites afin de procéder à des analyses corrélationnelles sur la performance ainsi que sur le volume de différentes structures cérébrales. Les résultats indiquent des hyperactivations dans les régions frontales droites chez les participants TCL souffrant d’une plus grande atteinte neuronale. De plus, le niveau d’activation est négativement corrélé au volume de structures frontales et pariétales. Ces résultats indique la présence d’une hyperactivation compensatoire dans la phase du TCL associée à la réalisation d’une tâche de mémoire de travail.
Resumo:
El presente trabajo tuvo como objetivo evaluar la existencia de la relación entre la atrofia cortical difusa objetivada por neuroimagenes cerebrales y desempeños cognitivos determinados mediante la aplicación de pruebas neuropsicológicas que evalúan memoria de trabajo, razonamiento simbólico verbal y memoria anterógrada declarativa. Participaron 114 sujetos reclutados en el Hospital Universitario Mayor Méderi de la ciudad de Bogotá mediante muestreo de conveniencia. Los resultados arrojaron diferencias significativas entre los dos grupos (pacientes con diagnóstico de atrofia cortical difusa y pacientes con neuroimagenes interpretadas como dentro de los límites normales) en todas las pruebas neuropsicológicas aplicadas. Respecto a las variables demográficas se pudo observar que el grado de escolaridad contribuye como factor neuroprotector de un posible deterioro cognitivo. Tales hallazgos son importantes para determinar protocoles tempranos de detección de posible instalación de enfermedades neurodegenerativas primarias.
Resumo:
BACKGROUND The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. METHODS This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20-29, 30-49, 50-69, and ≥70 years) and cardiac measurements were compared using Pearson's rank correlation over the four different groups. RESULTS With advanced age a slight but significant decrease in ESV (r=-0.41 for both ventricles, P<0.001) and EDV (r=-0.39 for left ventricle, r=-0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). CONCLUSIONS The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies.
Resumo:
Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.
Resumo:
Background Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. Methods We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Results Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference equal to .408, p less than .001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. Conclusions This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.
Resumo:
The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and N-15 backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35 +/- 0.06 angstrom for backbone atoms and 0.8 +/- 0.06 angstrom for all heavy atoms. Furthermore, 99.4% of the backbone dihedral angles are present in the allowed region of the Ramachandran map, indicating the stereochemical quality of the structure. The core of the tertiary structure of the GATase is composed of a seven-stranded mixed beta-sheet that is fenced by five alpha-helices. The Mj GATase is similar in structure to the Pyrococcus horikoshi (Ph) GATase subunit. Nuclear magnetic resonance (NMR) chemical shift perturbations and changes in line width were monitored to identify residues on GATase that were responsible for interaction with magnesium and the ATPPase subunit, respectively. These interaction studies showed that a common surface exists for the metal ion binding as well as for the protein-protein interaction. The dissociation constant for the GATase-Mg2+ interaction has been found to be similar to 1 mM, which implies that interaction is very weak and falls in the fast chemical exchange regime. The GATase-ATPPase interaction, on the other hand, falls in the intermediate chemical exchange regime on the NMR time scale. The implication of this interaction in terms of the regulation of the GATase activity of holo GMPS is discussed.