937 resultados para starch hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid and ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures are studied, as a function of the initial additions of ethanol to the mixtures, by means of flux calorimetry measurements. A device was specially designed for this purpose. Under acid conditions, our proposed method has been able to resolve hydrolysis from other condensation reactions, by detecting the exothermal hydrolysis reaction heat. The process has been explained by a dissolution and reaction mechanism. Ultrasound forces the dissolution process to start the reaction. The alcohol produced in the reaction helps the dissolution process to further enhance the hydrolysis. Initial amounts of pure ethanol added to the mixtures shorten the start time of the reaction, due to an additional effect of dissolution, and diminish the reaction rate, as a result of the solvent dilution effect. Our dissolution and reaction mechanism modeling describes the main points arising from the experimental data and yields k(H) = 0.24 M(-1) min(-1) for the second-order hydrolysis rate constant at 39 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and mixed tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS) were hydrolyzed at 35 degrees C, using oxalic acid as a catalyst and ultrasound stimulation. The hydrolysis reaction was carried out in a specially designed device, in which a heat flow steady state, between the ultrasound source and an external thermostatic bath, was maintained, in the absence of reactions. The exothermic hydrolysis causes a time dependent thermal peak. An induction time is apparent in pure TEOS before the hydrolysis peaks starts, which has been explained by the initial immiscibility gap of the TEOS-water system. The induction time was found to be approximately of the same magnitude as in the HCl catalyzed hydrolysis, in spite of the uncertainty accompanying the peak definition. No induction period is apparent in pure TMOS, so that the hydrolysis starts with its maximum rate. Two independent thermal peaks in the mixed TMOS-TEOS samples were found, both associated to the respective hydrolyses of the pure component. The induction time for the TEOS hydrolysis is decreased as more alcohol (and silanol) is produced in the earlier TMOS hydrolysis. This effect is explained by improvement of homogenization by alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid hydrolysis under ultrasound stimulation of solventless tetraethoxysilane(TEOS)-water mixtures was studied at 40 degrees C, by means of a heat flux calorimetric method, as a function of the initial water/TEOS molar ratio (r) ranging from 2 to 10. The method is based on the time record of the exothermic heat peak of hydrolysis, arising after an induction time under ultrasound stimulation, which is a measure of the reaction rate. The hydrolysed quantity was found to be approximately independent of the water/TEOS molar ratio, even for r < 4. Polycondensation reaction takes place mainly for low water/TEOS molar ratio in order to supply water to allow almost complete hydrolysis. The overall process of dissolution and hydrolysis has reasonably been described by a previous modelling. The dissolution process of water in TEOS, under ultrasound stimulation and acid conditions, was found to be rather dependent of the alcohol produced in the hydrolysis reaction instead of the initial water quantity present in the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starch extraction from roots and tubers uses grating with water and sieves to separate the starch slurry from residual mass. The starch is recovered by decantation or centrifugation. The yam starch extraction is difficult due to high viscosity of the slurry caused by non-starch polysaccharides (NSP). The establishment of an efficient extraction process may turn yam into a competitive raw material. In this paper Dioscorea alata starch extracted by four methods was characterized in order to establish the impact of treatments. When the tubers were digested with an aqueous oxalic acid/ammonium oxalate (OA/AO) 1/1 solution, it was easier to separate the starch slurry from residual mass, because viscosity was reduced. For all the others methods tested, the viscosity remained almost the same. The nitrogen present in yam tubers was removed during the different extractions to a different extent. The largest nitrogen reduction was observed with ONAO followed by the control (water). The spectrum of starch granules sizes obtained also varied according to the treatment. Results proved that NSP carries small starch granules over to the waste water. The smaller starch granules diameter varied from 1.9 mu m (OA/AO extraction) to 13.5 mu m (water and pectinase extractions). The larger diameter varied from 41.0 mu m (NaOH treatment) to 67.7 mu m (ONAO). All starches extracted showed a RVA behavior in agreement with literature for yam starch, but with small differences due to the influence of methods. ONAO extraction showed the best recovery (18 g of starch/100 g tuber yam) and granular variation but it interfered with the rheological behavior of starch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comprehension of the structure of starch granules is important for the understanding of its physicochemical properties. Native and sour cassava starches after being analyzed with respect to their pasting properties and baking expansion capacity, were treated with 2.2 N HCl at 38 degreesC for a maximum of nine days. The starch granules remaining after lintnerization were analyzed for amylose content and intrinsic viscosity, by X-ray diffraction, scanning electron microscopy and chromatographic analysis. The results indicated that the acid hydrolysis on all starches occurred in two steps. The first one, with high hydrolysis rate, was characterized by a quick degradation of the amorphous part of the granules whereas the second step, with lower hydrolysis rate, was characterized by a higher resistance of the organized areas of the granules to acid treatment. Most of the amylose chains were found in the amorphous areas of starch granules only a small percentage was involved in the crystalline regions. The microscopic and chromatographic analysis demonstrated that the acid hydrolysis was not able to disrupt the entire granular crystalline structure. Fermented starch showed amylose and/or amylopectin chain fractions resistant to pullulanase, probably due to structural alterations during fermentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified dissolution and reaction modeling was employed to study the hydrolysis of heterogeneous tetraethoxysilane (TEOS)-water-HCl mixtures under ultrasound stimulation. The nominal pH was changed from 0.8 to 2.0. The acid specific hydrolysis rate constant was determined as k = 6.1 mol(-1) 1 min(-1) [H+](-1) at 39 degreesC, in good agreement with the literature. Along the heterogeneous step of the reaction, the ultrasound maintains an additional quantity of water under a virtual state of dissolution besides the water dissolved due to the homogenizing effect of the alcohol produced in the reaction. The forced virtually dissolved water is probably represented by water at the TEOS-water interface during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TEOS phase, while hydrolysis has not started yet, was evaluated as about 290 A. The HCl concentration accordingly increases the hydrolysis rate constant but its fundamental role on the immiscibility gap of the TEOS-water-ethanol system has not been unequivocally established. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle X-ray scattering measurements, bulk and skeleton density data and an in-situ study by dilatometric thermal analysis about the nanoporosity elimination above 800 degreesC in TEOS sonogels are presented. Apparently, two processes act during the nanoporosity elimination, which precedes the foaming phenomenon often observed in such systems. The first, with an activation energy of (3.9 +/- 0.4) x 10(2) kJ/mol and high frequency factor, is the controlling process of the most nanoporosity elimination at higher temperature. The value of this activation energy is compatible to that for viscous flux throughout densification process in typical silica-based materials. The second, with an activation energy of (49 +/- 5) kJ/mol and low frequency factor, seems to be the controlling process of the first and extremely slow nanoporosity elimination at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of ultrasound-stimulated and HCl-catalyzed hydrolysis of solventless TEOS-water mixtures was studied as a function of temperature ranging from 10 degrees C up to 65 degrees C by means of flux calorimetry measurements. A specially designed device was utilized for this purpose. The exothermic peak arising few minutes after sonication began has been attributed mainly to the hydrolysis reaction. The overall hydrolysis process, which was measured through the irradiation time up to the hydrolysis peak, was found to be thermally activated, with an apparent activation energy Delta E = 36.4 kJ/mol. The alcohol produced at the early hydrolysis due to sonication seems to further enhance the reaction, via a parallel autocatalytic path, which is controlled by a faster pseudo second order rate constant (k'). Our modeling yielded k' = 6.3 x 10(-2) M(-1) min(-1) at 20 degrees C, which is in a reasonable agreement with the literature, and an activation energy Delta E = 40.4 kJ/mol for the specific process of hydrolysis in presence of alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physicochemical properties of maize starch obtained under different steeping conditions by intermittent milling and dynamic steeping process (IMDS) were studied. Brazilian dent maize (hybrid XL 606) was milled using a 2x2x3 factorial experimental design with two lactic acid levels (0.0 and 0.55%, v/v), two SO2 levels (0.05 and 0.1%, w/v), and three temperatures (52, 60, and 68degreesC). Properties of starch obtained by conventional wet-milling process (36 hr at 52degreesC, 0.55% lactic acid, and 0.2% SO2) were used for comparison. Starch protein content and solubility increased with presence of lactic acid, while swelling power decreased. Higher SO2 concentration (0.1%) had the same effect as lactic acid on some properties. Steeping temperatures of 60 and 68degreesC increased solubility and most of the thermal properties but reduced swelling power, suggesting stronger starch annealing during IMDS at these temperatures. Some thermal changes on starch granules were visualized by scanning electron microscopy (SEM) at 60 and 68degreesC. Amylose content as well as pasting properties were affected by steeping factors and interactions. Starches from IMDS and conventional wet-milling processes were similar in most properties, indicating that IMDS provides starch with quality similar to that from conventional milling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of TMOS in oxalic acid catalyzed reacting TMOS-water mixtures, under ultrasound stimulation, was studied by fitting a simplified dissolution and reaction modeling for samples, the hydrolysis rate of which had been measured in a previous work. The reaction pathway represented in a ternary diagram shows a heterogeneous step for the reaction which gradually progresses until complete homogenization of the system. Besides the water dissolved due to the homogenizing effect of the alcohol, ultrasound maintains a virtual and additional dissolution of water located at the interface between the TMOS and water during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TMOS was evaluated as around 150 Angstrom. The oxalic acid concentration accordingly increases the hydrolysis rate constant but its fundamental role on the solubility of water in TMOS could not unequivocally be established.