949 resultados para special-purpose functionalized conjugated polymers
Resumo:
Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.
Resumo:
Saudi Arabian education is undergoing substantial reform in the context of a nation transitioning from a resource-rich economy to a knowledge economy. Gifted students are important human resources for such developing countries. However, there are some concerns emanating from the international literature that gifted students have been neglected in many schools due to teachers’ attitudes toward them. The literature shows that future teachers also hold similar negative attitudes, especially those in Special Education courses who, as practicing teachers, are often responsible for supporting the gifted education process. The purpose of this study was to explore whether these attitudes are held by future special education teachers in Saudi Arabia, and how the standard gifted education course, delivered as part of their program, impacts on their attitudes toward gifted students. The study was strongly influenced by the Theory of Reasoned Action (Ajzen, 1980, 2012) and the Theory of Personal Knowledge (Polanyi, 1966), which both suggest that attitudes are related to people’s (i.e. teachers’) beliefs. A mixed methods design was used to collect quantitative and qualitative data from a cohort of students enrolled in a teacher education program at a Saudi Arabian university. The program was designed for students majoring in special education. The quantitative component of the study involved an investigation of a cohort of future special education teachers taking a semester-long course in gifted education. The data were primarily sourced from a standard questionnaire instrument modified in the Arabic language, and supplemented with questions that probed the future teachers’ attitudes toward gifted children. The participants, 90 special education future teachers, were enrolled in an introductory course about gifted education. The questionnaire contained 34 items from the "Opinions about the Gifted and Their Education" (Gagné, 1991) questionnaire, utilising a five-point Likert scale. The quantitative data were analysed through the use of descriptive statistics, Spearman correlation Coefficients, Paired Samples t-test, and Multiple Linear Regression. The qualitative component focussed on eight participants enrolled in the gifted education course. The primary source of the qualitative data was informed by individual semi-structured interviews with each of these participants. The findings, based on both the quantitative and qualitative data, indicated that the majority of future special education teachers held, overall, slightly positive attitudes toward gifted students and their education. However, the participants were resistant to offering special services for the gifted within the regular classroom, even when a comparison was made on equity grounds with disabled students. While the participants held ambivalent attitudes toward ability grouping, their attitudes were positive toward grade acceleration. Further, the majority agreed that gifted students are likely to be rejected by their teachers. Despite such judgments, they considered the gifted to be a valuable resource for Saudi society. Differences within the cohort were found when two variables emerged as potential predictors of attitude: age, experience, and participants’ hometown. The younger (under 25 years old) future special education teachers, with no internship or school practice experience, held more positive attitudes toward the gifted students, with respect to their general needs, than did the older participants with previous school experiences. Additionally, participants from a rural region were more resistant toward gifted education than future teachers from urban areas. The findings also indicated that the attitudes of most of the participants were significantly improved, as a result of the course, toward ability grouping such as special classes and schools, but remained highly concerned about differentiation within regular classrooms with either elitism or time pressure. From the findings, it can be confirmed that a lectured-based course can serve as a starting point from which to focus future teachers’ attention on the varied needs of the gifted, and as a conduit for learning about special services for the gifted. However, by itself, the course appears to have minimal influence on attitudes toward differentiation. As a consequence, there is merit in its redevelopment, and the incorporation of more practical opportunities for future teachers to experience the teaching of the gifted.
Resumo:
This special issue of the Journal of Learning Design, led by Jill Franz and Lindy Osborne, from the School of Design in the Creative Industries Faculty at the Queensland University of Technology, is grounded in Design Education. Its papers are drawn from differing fields of design: digital media, architecture, and environmental design. Each makes use of technologies in differing ways but all share the singular purpose of achieving enhanced learning outcomes from students.
Resumo:
The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting π-systems.
Resumo:
A series of conjugated copolymers containing fluorene or indenofluorene units alternating with oligothiophene segments, with potential interest for use as the active layer in field-effect transistors, is investigated. Atomic force microscopy analysis of the morphology of thin deposits shows either the formation of fibrillar structures, which are the signature of long-range π stacking, or the presence of untextured aggregates, resulting from disordered assembly. These morphologies are interpreted in terms of the supramolecular organization of the conjugated chains. Molecular modeling simulations indicate that the commensurability between the lengths of the monomer units and the presence of alkyl side groups are the two key structural factors governing the chain organization into highly ordered assemblies. The most favorable structures are those combining fluorene (indenofluorene) units with unsubstituted bithiophene (terthiophene) segments.
Resumo:
This paper contributes to conversations about school, post-compulsory and further education policy by reporting findings from a three-year study with disaffected students who have been referred to special “behaviour” schools. Contrary to popular opinion, our research finds that these “ignorant yobs” (Tomlinson, 2012) do value education and know what it is for. They also have aspirations for a secure, productive and fulfilled life, although it may not involve university level study. Importantly, we found that students who responded negatively with regard to the importance of schooling tended to envision future lives and occupations for which they believed school knowledge was unnecessary. The implications of this research for school, post-compulsory and further education policy are discussed.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
Conducting polymers have become the focus of research due to their interesting properties, such as a wide range of conductivity, facile production, mechanical stability, light weight and low cost and due to the ease with which conducting polymers can be nanostructured to meet the specific application. They have become valuable materials for many applications, such as energy storage and generation. Recently, conducting polymers have been studied to be used in supercapacitors, battery electrode and fuel cells. This article is to briefly discuss the background & theory behind their conductivity as well as to highlight the recent contributions of conducting polymers to the field of energy and their significance. Furthermore, the methods of production of the conducting polymers in addition to the different ways utilised to nano-engineer special morphologies are discussed.
Resumo:
Abstract: A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Keywords: organic solar cell; organic photovoltaic; diketopyrrolopyrrole; chemical doping; spectroelectrochemistry; photoinduced absorption; hole polaron
Resumo:
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Resumo:
Hyperbranched polymers conjugated to a peptide-aptamer were prepared using a combination of RAFT polymerisation and click chemistry for targeting tumour cells in vivo. The polymers showed enhanced cell-uptake in vitro (compared to unconjugated polymer)while excellent specificity for solid tumours was observed in vivo using a mouse model of melanoma.
Resumo:
Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.