942 resultados para protein aggregation and neurofilament
Resumo:
1. Protein utilisation and turnover were measured in male chickens sampled from a line selected for high breast yield and a randombred control line (lines QL and CL, experiment 1) and in male chickens sampled from lines selected for either high or low abdominal fatness (lines FL and LL, experiment 2). In each experiment, 18 birds per line were given iso-energetic (12.9 MJ ME/kg) diets containing either 120 or 220 g CP/kg from 21 to 29 d (experiment 1) and 33 to 43 d (experiment 2). 2. Measurements were made of growth rate, food intake, body composition, excreta production and N-tau-methylhistidine excretion as a measure of myofibrillar protein breakdown, and fractional rates (%/d) of protein deposition, breakdown and synthesis were calculated. 3. In experiment 1, there were no significant differences between the line means for the fractional measures of protein turnover, but there was marked differential response in the two lines in the fractional rates of protein deposition, breakdown and synthesis, to increase in protein intake. The positive slope of the regressions of fractional (%/d) protein deposition and synthesis rates on protein intake (g/d/kg BW) were approximately 1.4- and 2.0-fold higher respectively in the QL than the CL line birds, and the negative slope of the regression of fractional breakdown rate on protein intake was approximately threefold greater in the CL than the QL line birds. 4. In experiment 2, fractional deposition rate was 6.2% lower, but fractional breakdown rate 9.4% higher in the LL than the FL birds, whilst there was essentially no difference in response of the FL and LL birds in the components of protein turnover to increase in protein intake. Line differences in deposition and breakdown rates were thus a reflection of the considerably higher (20%) food and hence protein intake in the FL than the LL birds. 5. The differential line responses in protein turnover in the two experiments suggest that selection for increased breast muscle yield and for reduced body fatness manipulate different physiological pathways in relation to protein turnover, but neither selection strategy results in an improvement in net protein utilisation at typical levels of protein intake by birds on commercial broiler diets, through a reduction in protein breakdown rate.
Resumo:
Background/aims: Chronic infections such as those caused by Chlamydia pneumoniae and periodontopathic bacteria such as Porphyromonas gingivalis have been associated with atherosclerosis, possibly due to cross-reactivity of the immune response to bacterial GroEL with human heat shock protein (hHSP) 60. Methods: We examined the cross-reactivity of anti-GroEL and anti-P. gingivalis antibodies with hHSP60 in atherosclerosis patients and quantified a panel of six pathogens in atheromas. Results: After absorption of plasma samples with hHSP60, there were variable reductions in the levels of anti-GroEL and anti-P. gingivalis antibodies, suggesting that these antibodies cross-reacted with hHSP60. All of the artery specimens were positive for P. gingivalis. Fusobacterium nucleatum, Tannerella forsythia, C. pneumoniae, Helicobacter pylori, and Haemophilus influenzae were found in 84%, 48%, 28%, 4%, and 4% of arteries, respectively. The prevalence of the three periodontopathic microorganisms, P. gingivalis, F. nucleatum and T. forsythia, was significantly higher than that of the remaining three microorganisms. Conclusions: These results support the hypothesis that in some patients, cross-reactivity of the immune response to bacterial HSPs including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may be a possible mechanism for the association between atherosclerosis and periodontal infection.
Resumo:
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
CyBase is a curated database and information source for backbone-cyclized proteins. The database incorporates naturally occurring cyclic proteins as well as synthetic derivatives, grafted analogues and acyclic permutants. The database provides a centralized repository of information on all aspects of cyclic protein biology and addresses issues pertaining to the management and searching of topologically circular sequences. The database is freely available at http://research.imb.uq.edu.au/cybase.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases