844 resultados para partial least square
Resumo:
Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.
Resumo:
Os estudos da satisfação e lealdade do cliente em ambiente Business-to-Business têm emergido devido ao interesse práctico e académico. Recorreu-se a um caso práctico de uma empresa de software internacional, ESRI, a operar em Portugal com modelo de negócio B2B e comportamento de compra extensivo. Desenvolveu-se um modelo estrutural com 11 variáveis latentes: lealdade; satisfação; imagem; atmosfera; cooperação; adaptação; processos; tecnologia; orientação ao cliente; competências; colaboradores e comunicação. Foram analisadas 304 respostas ao questionário de satisfação e de seguida aplicou-se o modelo a seis grupos de clientes segmentados de acordo com a contribuição do cliente para as receitas e o comportamento no processo de decisão de compra. Recorreu-se a modelos SEM (Structural Equation Modelling) com estimação dos parâmetros através da metodologia PLS (partial Least Squares). Os resultados mostram nos seis segmentos, que os valores da empresa, a cooperação através da competência dos colaboradores e da orientação ao cliente e a tecnologia são factores mais importantes para a satisfação e lealdade dos clientes.
Resumo:
Mestrado em Contabilidade, Fiscalidade e Finanças Empresariais
Resumo:
Although the relationship between serum uric acid (SUA) and adiposity is well established, the direction of the causality is still unclear in the presence of conflicting evidences. We used a bidirectional Mendelian randomization approach to explore the nature and direction of causality between SUA and adiposity in a population-based study of Caucasians aged 35 to 75 years. We used, as instrumental variables, rs6855911 within the SUA gene SLC2A9 in one direction, and combinations of SNPs within the adiposity genes FTO, MC4R and TMEM18 in the other direction. Adiposity markers included weight, body mass index, waist circumference and fat mass. We applied a two-stage least squares regression: a regression of SUA/adiposity markers on our instruments in the first stage and a regression of the response of interest on the fitted values from the first stage regression in the second stage. SUA explained by the SLC2A9 instrument was not associated to fat mass (regression coefficient [95% confidence interval]: 0.05 [-0.10, 0.19] for fat mass) contrasting with the ordinary least square estimate (0.37 [0.34, 0.40]). By contrast, fat mass explained by genetic variants of the FTO, MC4R and TMEM18 genes was positively and significantly associated to SUA (0.31 [0.01, 0.62]), similar to the ordinary least square estimate (0.27 [0.25, 0.29]). Results were similar for the other adiposity markers. Using a bidirectional Mendelian randomization approach in adult Caucasians, our findings suggest that elevated SUA is a consequence rather than a cause of adiposity.
Resumo:
Mann–Kendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889–1918 (NP1), 1919–1948 (NP2), 1949–1978 (NP3) and 1979–2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June– September, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889–2008) mean annual rainfall of CNE India is 1,195.1 mm with a standard deviation of 134.1 mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6 mm/year for Jharkhand and 3.2 mm/day for CNE India. Since rice crop is the important kharif crop (May– October) in this region, the decreasing trend of rainfall during themonth of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During themonth of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November–March) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914– 2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during postmonsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4– 8 years peak periodicity band has been noticed during September over Western UP, and 30–34 years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.
Resumo:
Speckle Pattern Shearing Interferometrie (Shearografie) ist eine speckle-interferometrische Messmethode und zeichnet sich durch die ganzflächige, berührungslose Arbeitsweise, hohe räumliche Auflösung und hohe Messempfindlichkeit aus. Diese Dissertation beinhaltet die neue bzw. weitere Entwicklung der Shearografie zur qualitativen Schwingungsbeobachtung und zur quantitativen Schwingungsmessung. Für die qualitative Schwingungsbeobachtung in Echtzeit werden die Optimierung des Zeitmittelungsverfahrens und die neue entwickelte Online-Charakterisierung von Streifenmustern mit statistischen Verfahren vorgestellt. Auf dieser Basis können sowohl eine genaue Fehlstellen-Detektion bei der zerstörungsfreien Materialprüfung als auch eine präzise Resonanzuntersuchung zeitsparend und vollautomatisch durchgeführt werden. Für die quantitative Schwingungsmessung wird eine sog. dynamische Phasenschiebe-Technik neu entwickelt, welche durch die Einführung eines synchron zum Objekt schwingenden Referenzspiegels realisiert wird. Mit dieser Technik ermöglicht das Zeitmittelungsverfahren die Amplituden und Phasen einer Objektschwingung quantitativ zu ermitteln. Auch eine Weiterentwicklung des stroboskopischen Verfahrens in Kombination mit zeitlicher Phasenverschiebung wird in der Arbeit präsentiert, womit der gesamte Prozess der Schwingungsmessung und -rekonstruktion beschleunigt und automatisch durchgeführt wird. Zur Bestimmung des Verschiebungsfeldes aus den gemessenen Amplituden und Phasen des Verformungsgradienten stellt diese Arbeit auch eine Weiterentwicklung des Summationsverfahrens vor. Das Verfahren zeichnet sich dadurch aus, dass die Genauigkeit des ermittelten Verschiebungsfelds unabhängig von der Sheargröße ist und gleichzeitig das praktische Problem - Unstetigkeit - gelöst wird. Eine quantitative Messung erfordert eine genaue Kalibrierung der gesamten Messkette. Ein auf dem Least-Square-Verfahren basierendes Kalibrierverfahren wird in der Arbeit zur Kalibrierung der statischen und dynamischen Phasenverschiebung vorgestellt. Auch die Ermittelung der Sheargröße mit Hilfe der 1D- bzw. 2D-Kreuz-Korrelation wird präsentiert. Zum Schluss wurde die gesamte Entwicklung durch eine Vergleichsmessung mit einem handelsüblichen Scanning-Laser-Doppler-Vibrometer experimentell verifiziert.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Collective action has been used as a strategy to improve the benefits of smallholder producers of kola nuts in Cameroon. Despite demonstrated benefits, not all producers are involved in the collective action. The presented study used a modified Technology Acceptance Model (TAM) namely the Collective Action Behaviour model (CAB model) to analyse kola producers’ motivation for collective action activities. Five hypotheses are formulated and tested using data obtained from 185 farmers who are involved in kola production and marketing in theWestern highlands of Cameroon. Results which were generated using Partial Least Squares (PLS) approach for Structural Equation Modelling (SEM) showed that farmers’ intrinsic motivators and ease of use influenced their behavioural intent to join a group marketing activities. The perceived usefulness that was mainly related to the economic benefits of group activities did not influence farmers’ behavioural intent. It is therefore concluded that extension messages and promotional activities targeting collective action need to emphasise the perceived ease of use of involvement and social benefits associated with group activities in order to increase farmers’ participation.
Resumo:
In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression
Resumo:
Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression
Resumo:
En esta Tesis se presenta el modelo de Kou, Difusión con saltos doble exponenciales, para la valoración de opciones Call de tipo europeo sobre los precios del petróleo como activo subyacente. Se mostrarán los cálculos numéricos para la formulación de expresiones analíticas que se resolverán mediante la implementación de algoritmos numéricos eficientes que conllevaran a los precios teóricos de las opciones evaluadas. Posteriormente se discutirán las ventajas de usar métodos como la transformada de Fourier por la sencillez relativa de su programación frente a los desarrollos de otras técnicas numéricas. Este método es usado en conjunto con el ejercicio de calibración no paramétrica de regularización, que mediante la minimización de los errores al cuadrado sujeto a una penalización fundamentada en el concepto de entropía relativa, resultaran en la obtención de precios para las opciones Call sobre el petróleo considerando una mejor capacidad del modelo de asignar precios justos frente a los transados en el mercado.
Resumo:
We look at at the empirical validity of Schelling’s models for racial residential segregation applied to the case of Chicago. Most of the empirical literature has focused exclusively the single neighborhood model, also known as the tipping point model and neglected a multineighborhood approach or a unified approach. The multi-neighborhood approach introduced spatial interaction across the neighborhoods, in particular we look at spatial interaction across neighborhoods sharing a border. An initial exploration of the data indicates that spatial contiguity might be relevant to properly analyse the so call tipping phenomena of predominately non-Hispanic white neighborhoods to predominantly minority neighborhoods within a decade. We introduce an econometric model that combines an approach to estimate tipping point using threshold effects and a spatial autoregressive model. The estimation results from the model disputes the existence of a tipping point, that is a discontinuous change in the rate of growth of the non-Hispanic white population due to a small increase in the minority share of the neighborhood. In addition we find that racial distance between the neighborhood of interest and it surrounding neighborhoods has an important effect on the dynamics of racial segregation in Chicago.
Resumo:
Monográfico con el título: 'El reto de la educación de mujeres y varones'. Resumen basado en el de la publicación
Resumo:
Diffuse reflectance spectroscopy (DRS) is increasingly being used to predict numerous soil physical, chemical and biochemical properties. However, soil properties and processes vary at different scales and, as a result, relationships between soil properties often depend on scale. In this paper we report on how the relationship between one such property, cation exchange capacity (CEC), and the DRS of the soil depends on spatial scale. We show this by means of a nested analysis of covariance of soils sampled on a balanced nested design in a 16 km × 16 km area in eastern England. We used principal components analysis on the DRS to obtain a reduced number of variables while retaining key variation. The first principal component accounted for 99.8% of the total variance, the second for 0.14%. Nested analysis of the variation in the CEC and the two principal components showed that the substantial variance components are at the > 2000-m scale. This is probably the result of differences in soil composition due to parent material. We then developed a model to predict CEC from the DRS and used partial least squares (PLS) regression do to so. Leave-one-out cross-validation results suggested a reasonable predictive capability (R2 = 0.71 and RMSE = 0.048 molc kg− 1). However, the results from the independent validation were not as good, with R2 = 0.27, RMSE = 0.056 molc kg− 1 and an overall correlation of 0.52. This would indicate that DRS may not be useful for predictions of CEC. When we applied the analysis of covariance between predicted and observed we found significant scale-dependent correlations at scales of 50 and 500 m (0.82 and 0.73 respectively). DRS measurements can therefore be useful to predict CEC if predictions are required, for example, at the field scale (50 m). This study illustrates that the relationship between DRS and soil properties is scale-dependent and that this scale dependency has important consequences for prediction of soil properties from DRS data
Resumo:
Background: MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results: A large dataset comprising MHC-peptide structural complexes was created by remodelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion: The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.