987 resultados para nonlinear schrodinger equations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 76M35, 82B31

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some new nonlinear integral inequalities that involve the maximum of the unknown scalar function of one variable are solved. The considered inequalities are generalizations of the classical nonlinear integral inequality of Bihari. The importance of these integral inequalities is defined by their wide applications in qualitative investigations of differential equations with "maxima" and it is illustrated by some direct applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book deals with equations of mathematical physics as the different modifications of the KdV equation, the Camassa-Holm type equations, several modifications of Burger's equation, the Hunter-Saxton equation, conservation laws equations and others. The equations originate from physics but are proposed here for their investigation via purely mathematical methods in the frames of university courses. More precisely, we propose classification theorems for the traveling wave solutions for a sufficiently large class of third order nonlinear PDE when the corresponding profiles develop different kind of singularities (cusps, peaks), existence and uniqueness results, etc. The orbital stability of the periodic solutions of traveling type for mKdV equations are also studied. Of great interest too is the interaction of peakon type solutions of the Camassa-Holm equation and the solvability of the classical and generalized Cauchy problem for the Hunter-Saxton equation. The Riemann problem for special systems of conservation laws and the corresponding -shocks are also considered. As it concerns numerical methods we apply the CNN approach. The book is addressed to a broader audience including graduate students, Ph.D. students, mathematicians, physicist, engineers and specialists in the domain of PDE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35J40, 49J52, 49J40, 46E30

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35B35, 35B40, 35Q35, 76B25, 76E30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Кремена В. Стефанова - В тази статия са разрешени някои нелинейни интегрални неравенства, които включват максимума на неизвестната функция на две променливи. Разгледаните неравенства представляват обобщения на класическото неравенство на Гронуол-Белман. Значението на тези интегрални неравенства се определя от широките им приложения в качествените изследвания на частните диференциални уравнения с “максимуми” и е илюстрирано чрез някои директни приложения.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 74J30, 34L30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35R60, 60H15, 74H35.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 42A38. Secondary 42B10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Az x''+f(x) x'+g(x) = 0 alakú Liénard-típusú differenciálegyenlet központi szerepet játszik az üzleti ciklusok Káldor-Kalecki-féle [3,4] és Goodwin-féle [2] modelljeiben, sőt egy a munkanélküliség és vállalkozás-ösztönzések ciklikus változásait leíró újabb modellben [1] is. De ugyanez a nemlineáris egyenlettípus a gerjesztett ingák és elektromos rezgőkörök elméletét is felöleli [5]. Az ezzel kapcsolatos irodalom nagyrészt a határciklusok létezését vizsgálja (pl. [5]), pedig az alapvető stabilitási kérdések jóval áttekinthetőbb módon kezelhetők, s a kapott eredmények közvetve a határciklusok létezésének feltételeit is sokkal jobban be tudják határolni. Jelen dolgozatban az egyváltozós analízis hatékony nyelvezetével olyan egyszerűen megfogalmazható eredményekhez jutunk, amelyek képesek kitágítani az üzleti és más közgazdasági ciklusok modelljeinek kereteit, illetve pl. az [1]-beli modellhez újabb szemléltető speciális eseteket is nyerünk. ____ The Liénard type differential equation of the form x00 + f(x) ¢ x0 + g(x) = 0 has a central role in business cycle models by Káldor [3], Kalecki [4] and Goodwin [2], moreover in a new model describing the cyclical behavior of unemployment and entrepreneurship [1]. The same type of nonlinear equation explains the features of forced pendulums and electric circuits [5]. The related literature discusses mainly the existence of limit cycles, although the fundamental stability questions of this topic can be managed much more easily. The achieved results also outline the conditions for the existence of limit cycles. In this work, by the effective language of real valued analysis, we obtain easy-formulated results which may broaden the frames of economic and business cycle models, moreover we may gain new illustrative particular cases for e.g., [1].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.