981 resultados para chromosomal inversion polymorphisms
Resumo:
Joint inversion of crosshole ground-penetrating radar and seismic data can improve model resolution and fidelity of the resultant individual models. Model coupling obtained by minimizing or penalizing some measure of structural dissimilarity between models appears to be the most versatile approach because only weak assumptions about petrophysical relationships are required. Nevertheless, experimental results and petrophysical arguments suggest that when porosity variations are weak in saturated unconsolidated environments, then radar wave speed is approximately linearly related to seismic wave speed. Under such circumstances, model coupling also can be achieved by incorporating cross-covariances in the model regularization. In two case studies, structural similarity is imposed by penalizing models for which the model cross-gradients are nonzero. A first case study demonstrates improvements in model resolution by comparing the resulting models with borehole information, whereas a second case study uses point-spread functions. Although radar seismic wavespeed crossplots are very similar for the two case studies, the models plot in different portions of the graph, suggesting variances in porosity. Both examples display a close, quasilinear relationship between radar seismic wave speed in unconsolidated environments that is described rather well by the corresponding lower Hashin-Shtrikman (HS) bounds. Combining crossplots of the joint inversion models with HS bounds can constrain porosity and pore structure better than individual inversion results can.
Resumo:
OBJECTIVES: To determine the excess risk of non-chromosomal congenital anomaly (NCA) among teenage mothers and older mothers. DESIGN AND SETTING: Population-based prevalence study using data from EUROCAT congenital anomaly registers in 23 regions of Europe in 15 countries, covering a total of 1.75 million births from 2000 to 2004. PARTICIPANTS: A total of 38,958 cases of NCA that were live births, fetal deaths with gestational age > or = 20 weeks or terminations of pregnancy following prenatal diagnosis of a congenital anomaly. MAIN OUTCOME MEASURES: Prevalence of NCA according to maternal age, and relative risk (RR) of NCA and 84 standard NCA subgroups compared with mothers aged 25-29. RESULTS: The crude prevalence of all NCA was 26.5 per 1000 births in teenage mothers (<20 years), 23.8 for mothers 20-24 years, 22.5 for mothers 25-29 years, 21.5 for mothers 30-34 years, 21.4 for mothers 35-39 years and 22.6 for mothers 40-44 years. The RR adjusted for country for teenage mothers was 1.11 (95% CI 1.06-1.17); 0.99 (95% CI 0.96-1.02) for mothers 35-39; and 1.01 (95% CI 0.95-1.07) for mothers 40-44. The pattern of maternal age-related risk varied significantly between countries: France, Ireland and Portugal had higher RR for teenage mothers, Germany and Poland had higher RR for older mothers. The maternal age-specific RR varied for different NCAs. Teenage mothers were at a significantly greater risk (P < 0.01) of gastroschisis, maternal infection syndromes, tricuspid atresia, anencephalus, nervous system and digestive system anomalies while older mothers were at a significantly greater risk (P < 0.01) of fetal alcohol syndrome, encephalocele, oesophageal atresia and thanatophoric dwarfism. CONCLUSIONS: Clinical and public health interventions are needed to reduce environmental risk factors for NCA, giving special attention to young mothers among whom some risk factors are more prevalent. Reassurance can be given to older mothers that their age in itself does not confer extra risk for NCA.
Resumo:
Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.
Resumo:
BACKGROUND: HIV-infected individuals have an increased risk of myocardial infarction. Antiretroviral therapy (ART) is regarded as a major determinant of dyslipidemia in HIV-infected individuals. Previous genetic studies have been limited by the validity of the single-nucleotide polymorphisms (SNPs) interrogated and by cross-sectional design. Recent genome-wide association studies have reliably associated common SNPs to dyslipidemia in the general population. METHODS AND RESULTS: We validated the contribution of 42 SNPs (33 identified in genome-wide association studies and 9 previously reported SNPs not included in genome-wide association study chips) and of longitudinally measured key nongenetic variables (ART, underlying conditions, sex, age, ethnicity, and HIV disease parameters) to dyslipidemia in 745 HIV-infected study participants (n=34 565 lipid measurements; median follow-up, 7.6 years). The relative impact of SNPs and ART to lipid variation in the study population and their cumulative influence on sustained dyslipidemia at the level of the individual were calculated. SNPs were associated with lipid changes consistent with genome-wide association study estimates. SNPs explained up to 7.6% (non-high-density lipoprotein cholesterol), 6.2% (high-density lipoprotein cholesterol), and 6.8% (triglycerides) of lipid variation; ART explained 3.9% (non-high-density lipoprotein cholesterol), 1.5% (high-density lipoprotein cholesterol), and 6.2% (triglycerides). An individual with the most dyslipidemic antiretroviral and genetic background had an approximately 3- to 5-fold increased risk of sustained dyslipidemia compared with an individual with the least dyslipidemic therapy and genetic background. CONCLUSIONS: In the HIV-infected population treated with ART, the weight of the contribution of common SNPs and ART to dyslipidemia was similar. When selecting an ART regimen, genetic information should be considered in addition to the dyslipidemic effects of ART agents.
3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition.
Resumo:
Current 2D black blood coronary vessel wall imaging suffers from a relatively limited coverage of the coronary artery tree. Hence, a 3D approach facilitating more extensive coverage would be desirable. The straightforward combination of a 3D-acquisition technique together with a dual inversion prepulse can decrease the effectiveness of the black blood preparation. To minimize artifacts from insufficiently suppressed blood signal of the nearby blood pools, and to reduce residual respiratory motion artifacts from the chest wall, a novel local inversion technique was implemented. The combination of a nonselective inversion prepulse with a 2D selective local inversion prepulse allowed for suppression of unwanted signal outside a user-defined region of interest. Among 10 subjects evaluated using a 3D-spiral readout, the local inversion pulse effectively suppressed signal from ventricular blood, myocardium, and chest wall tissue in all cases. The coronary vessel wall could be visualized within the entire imaging volume.
Resumo:
OBJECTIVE: Although genetic factors have been implicated in the etiology of bipolar disorder, no specific gene has been conclusively identified. Given the link between abnormalities in serotonergic neurotransmission and bipolar disorder, a candidate gene association approach was applied to study the involvement of the monoamine oxidase A (MAOA) gene, which codes for a catabolic enzyme of serotonin, in the susceptibility to bipolar disorder. METHOD: In France and Switzerland, 272 patients with bipolar disorder and 122 healthy subjects were typed for three polymorphic markers of the MAOA gene: the MAOA-CA repeat, the MAOA restriction fragment length polymorphism (RFLP), and a repeat directly adjacent to the variable number of tandem repeats (VNTR) locus. RESULTS: A significant difference in the distribution of the alleles for the MAOA-CA repeat was observed between the female bipolar patients and comparison group. CONCLUSIONS: The results obtained in the French and Swiss population confirm findings from two studies conducted in the United Kingdom.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27-amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 pmol/l). GIP binding was displaced by < 20% by 1 mumol/l glucagon, glucagon-like peptide (GLP-I)(7-36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9-39) at 1 mumol/l displaced binding by approximately 70 and approximately 100% at 10 mumol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6-0.8 nmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9-39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 mumol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.
Resumo:
Summary. Genetic polymorphisms near IL28B are associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV). Our objective was to assess the predictive value of IL28B polymorphisms in the treatment of chronic hepatitis C of patients with HCV genotypes 4, for which data are currently limited. We analysed the association of IL28B polymorphisms with the virological response to treatment among 182 naïve chronic hepatitis C patients with HCV genotype 4, all from Syria. Associations of alleles with the response patterns were evaluated by univariate analysis and multivariate logistic regression, accounting for all relevant covariates. Sustained virological response (SVR) was achieved in 26% of rs8099917 TG/GG carriers compared with 60% of TT carriers (P < 0.0001) and 35% of rs12979860 CT/TT carriers compared with 62% of CC carriers (P = 0.0011). By multivariate analysis, the association between rs8099917 and SVR remained significant (OR = 0.19, 95% CI 0.07-0.50, for TG/GG vs TT, P = 0.0007), with the only significant covariate being advanced fibrosis (OR = 0.13, 95% CI 0.04-0.37, P = 0.0002). In conclusion, IL28B polymorphisms are the strongest predictors of response to therapy among chronic hepatitis C patients with HCV genotype 4.
Resumo:
This paper proposes a very fast method for blindly approximating a nonlinear mapping which transforms a sum of random variables. The estimation is surprisingly good even when the basic assumption is not satisfied.We use the method for providing a good initialization for inverting post-nonlinear mixtures and Wiener systems. Experiments show that the algorithm speed is strongly improved and the asymptotic performance is preserved with a very low extra computational cost.
Resumo:
An e cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm can perform e ciently even in the presence of hard distortions.
Resumo:
It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA is justified in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics.
Resumo:
This paper proposes a very fast method for blindly initial- izing a nonlinear mapping which transforms a sum of random variables. The method provides a surprisingly good approximation even when the basic assumption is not fully satis¯ed. The method can been used success- fully for initializing nonlinearity in post-nonlinear mixtures or in Wiener system inversion, for improving algorithm speed and convergence.
Resumo:
A system in which a linear dynamic part is followed by a non linear memoryless distortion a Wiener system is blindly inverted This kind of systems can be modelised as a postnonlinear mixture and using some results about these mixtures an e cient algorithm is proposed Results in a hard situation are presented and illustrate the e ciency of this algorithm