Fast Approximation of Nonlinearities for improving inversion algorithms of PNL mixtures and Wiener systems


Autoria(s): Solé-Casals, Jordi; Jutten, Christian; Pham, Dinh-Tuan
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

Data(s)

2005

Resumo

This paper proposes a very fast method for blindly approximating a nonlinear mapping which transforms a sum of random variables. The estimation is surprisingly good even when the basic assumption is not satisfied.We use the method for providing a good initialization for inverting post-nonlinear mixtures and Wiener systems. Experiments show that the algorithm speed is strongly improved and the asymptotic performance is preserved with a very low extra computational cost.

Formato

12 p.

Identificador

http://hdl.handle.net/10854/2089

Idioma(s)

eng

Publicador

Elsevier

Direitos

(c) Elsevier, 2005

Tots els drets reservats

Palavras-Chave #Robòtica #Control automàtic
Tipo

info:eu-repo/semantics/article