Initialisation of Nonlinearities for PNL and Wiener systems Inversion


Autoria(s): Solé-Casals, Jordi; Jutten, Christian; Pham, Dinh-Tuan
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

International Work-Conference on Artificial and Natural Neural Networks (7a : 2003 : Maó, Menorca, Illes Balears)

Data(s)

2003

Resumo

This paper proposes a very fast method for blindly initial- izing a nonlinear mapping which transforms a sum of random variables. The method provides a surprisingly good approximation even when the basic assumption is not fully satis¯ed. The method can been used success- fully for initializing nonlinearity in post-nonlinear mixtures or in Wiener system inversion, for improving algorithm speed and convergence.

Formato

8 p.

Identificador

http://hdl.handle.net/10854/2091

Idioma(s)

eng

Publicador

Springer

Direitos

(c) Springer (The original publication is available at www.springerlink.com)

Tots els drets reservats

Palavras-Chave #Xarxes neuronals (Informàtica)
Tipo

info:eu-repo/semantics/conferenceObject