970 resultados para Single-electron transport


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum measurement will inevitably cause backaction on the measured system, resulting in the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resonant tunnelling diodes with different structures were grown. Their photoluminescence spectra were investigated. By contrast, the luminescence in the quantum well is separated from that of other epilayers. The result is obtained that the exciton of the luminescence in the quantum well is partly come from the cap layer in the experiment. So the photoluminescence spectrum is closely related to the electron transport in the resonant tunnelling diode structure. This offers a method by which the important performance of resonant tunnelling diode could be forecast by analysing the integrated photoluminescence intensities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the current-voltage properties of a double quantum dot (DQD) connected by leads in arrangements that vary from series to symmetrical parallel configurations, in the presence of strong intradot Coulomb interaction. The influences of the connecting configurations and the difference between dot levels on the magnitude and symmetry of the total current are examined. We find that the connecting configurations of the dots can determine the number of the current paths and in turn determine the magnitude of the current, while the coupling strengths between the dots and the leads together with the difference of dot levels determine the current-voltage symmetry. The negative differential conductance observed in serial DQD can be explained in terms of the reduction of the current paths. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a specially- designed three-barrier-double-well tunneling structure, electron injecting from the emitter in combination with escaping through a resonant-tunneling structure were used to adjust and control the filling of electrons in different subbands. It was observed that the occupation in the first-excited electron state can result in a suppression to quantum confinement Stark effect. Moreover, at very low bias, a series of intrigue photoluminescence peaks appeared as a small quantity of excess electron was filled in the ground state of the quantum well, that cannot be explained by the theory of hand-to-hand transition in the framework of single electron picture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin-orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov-Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin-orbit interaction k(R)L variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural property of InN films grown on Ga-face GaN layers by metal-organic chemical vapor deposition has been studied by high-resolution x-ray diffraction. The mosaic tilt and twist are found to be strongly dependent on the surface lateral grain size. The twist decreases with increasing grain size and finally approaches to a constant level. On the other hand, the mosaic tilt increases substantially when the grain size becomes large enough and exceeds the width of step terraces on the GaN surface, showing an important mechanism for the defect generation in the InN/GaN system with large out-of-plane lattice mismatch. (c) 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mosaic structure in InN layers grown by metalorganic chemical vapor deposition at various temperatures has been investigated by X-ray diffraction (XRD). With a combination of Williamson-Hall measurement and fitting of twist angles, it was found that variation of growth temperature from 450 to 550 degrees C leads to the variation of the lateral coherence length, vertical coherence length, tilt and twist of mosaic blocks in InN films in a, respectively, monotonic way. In particular, mosaic tilt increases whereas mosaic twist decreases with elevating temperature. Atomic force microscopy shows the morphological difference of the InN nucleation layers grown at 450 and 550 degrees C. Different coalescence thickness and temperature-dependent in-plane rotation of InN nuclei are considered to account for the XRD results. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reverse I(V) measurement and analytic calculation of the electron transport across a Ti/6H-SiC Schottky barrier are presented. Based on the consideration of the barrier fluctuations and the barrier height shift caused by image charge and the applied voltage drop across Ti/SiC interfical layer, a comprehensive analytical model for the reverse tunneling current is developed using a WKB calculation of the tunneling probability through a reverse biased Schottky barrier. This model takes into account the main reverse conduction mechanism, such as field emission, thermionic field emission and thermionic emission. The fact that the simulated results are in good agreement with the experimental data indicates that the barrier height shift and barrier fluctuation can lead to reverse current densities orders of magnitude higher than that obtained from a simple theory. It is shown that the field and thermionic field emission processes, in which carries can tunnel through the barrier but cannot surmount it with insufficient thermal energy, dominate the reverse characteristics of a SiC Schottky contacts in a normal working condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the Buttiker dephasing model, the backscattering in the dephasing process is eliminated by setting a proper boundary condition. Explicit expression is carried out for the effective total tunneling probability in the presence of multiple pure dephasing scatterers with partial coherence. The derived formula is illustrated analytically by various limiting cases, and numerically for its application in tunneling through multibarrier systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.