956 resultados para SYNCHRONIZATION OF CHAOS
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
La presente investigación consiste en determinar las aplicaciones existentes de las teorías del caos y las teorías de la complejidad en la cadena de suministro del sector agroindustrial colombiano. Además, tiene como propósito describir el sector de la agroindustria y la cadena de suministro, identificar los modelos de caos y complejidad y posteriormente determinar cuáles de éstos son aplicables al sector. Se define el caos como una sub-disciplina de las matemáticas que estudia sistemas complejos o dinámicos y tiene inmerso implicaciones filosóficas; por otra parte complejidad es la cualidad que adquiere un sistema en el que hay diversos componentes relacionados. Se ha identificado que en el ámbito colombiano existen diferentes estudios enfocados en la construcción de modelos agroindustriales, donde se adopta el concepto de complejidad para calificar el atributo de dichos modelos que involucran la armonización e integración de diferentes actores, desde los productores hasta los consumidores. En este estudio se emplea un estudio monográfico de tipo documental teniendo como unidad de análisis la cadena de suministro del sector agroindustrial. Los resultados indican que las teorías del caos y complejidad se encuentran presentes dentro de la cadena de suministros del sector agroindustrial colombiano, ya que en ella se ocurre la interconexión entre productores, procesadores y comercializadores, interactuando entre ellos y presentando alteraciones en su comportamiento económico a lo largo del tiempo en función de variaciones de las condiciones iniciales influenciadas por variables macroeconómicas, ambientales, sociales y políticas.
Resumo:
Los estudios de liderazgo han abordado la interacción que existe entre el sujeto denominado líder y sus seguidores. Dentro de dicha relación se han estudiado las habilidades del líder y su impacto como coach. Hoy en día se pueden evidenciar un sinnúmero de estudios y aproximaciones en torno al término coaching, concepto, marcos teóricos, modelos, etc… En el presente artículo se hará un proceso investigativo en el que se define coaching desde el punto de vista de varios autores, expertos y managers que se desarrollan en el ámbito empresarial para poder encontrar una definición que comprenda las dimensiones del mundo organizacional, A continuación, se hará una búsqueda sistemática de las definiciones de coaching y a partir de esta búsqueda se propondrá una definición integradora que dé cuenta de los diversos ámbitos del estudio del liderazgo. Al revisar la terminología en cuanto a liderazgo y coaching, junto con su relación directa no hay una definición que realmente abarque todo el tema organizacional que implica estas dos palabras.
Resumo:
O objectivo deste trabalho é o estudo do tema Caos e Fractais, com o propósito fundamental da sua implementação na sala de aula ou outro ambiente do Ensino Secundário. Com esse fim, é feita uma abordagem teórica dos conteúdos e são apresentadas algumas actividades a desenvolver com os alunos daquele nível de ensino. A introdução dos conceitos é feita de modo a possibilitar a sua leitura por um público mais geral, onde se incluem os alunos mais interessados e curiosos no tema. O estudo é acompanhado, sempre que possível, de exemplos e ilustrações gráficas. Para tal, foi utilizado o software Maxima (software livre) e outras aplicações interactivas disponíveis na Internet. ABSTRACT: The aim of this work is to study the theme of Chaos and Fractals, with the fundamental purpose of its implementation in the classroom, or in other environments of secondary school education. To carry out this aim a theoretical outlook of the contents will be provided alongside some activities to be undergone with students of that school level. The introduction to these concepts is open to the understanding of a larger audience, where we can include the most interested and curious students in this issue. The study is accompanied, whenever possible, with examples and graphics. To do so, the Maxima software (free software) was used, besides other interactive applications available on the Internet.
Resumo:
Dairy industries are asked to be increasingly competitive and efficient. Despite the increasing trend in milk yield and protein content during the last decade genetic selection, milk coagulation ability has diminished and even if the absolute amount of cheese produced has increased, the relative cheese yield from a set amount of milk, has decreased. As casein content and variants, along with milk clotting properties (MCP) are determined to a large extent at DNA level, genetic selection and embryo transfer can provide efficacious tools to reverse this trend and achieve improvements. The aim of the proposed research was to determine how rapidly and to what extent milk coagulation properties could be improved by using embryo transfer (ET) as a tool to increase the frequency of k-casein BB genotype cattle and reducing A and E variants in an Italian Holstein herd with a low prevalence of the favourable genotype. In the effort to optimize superovulation protocols and results, synchronization of wave emergence was performed through manual transrectal ablation of the largest (dominant) ovarian follicle on days 7 or 8 of the cycle (estrus = day 0); different drugs and dosage for the superstimulation protocol were experimented trying to overcome the negative effects of stress and the perturbance of LH secretion in superovulated highly producing lactating cows and the use of SexedULTRA™ sex-sorted semen, for artificial insemination of superovulated cows was reported for the first time. The selection program carried out in this research, gave evidence and gathered empirical data of feasible genetic improvements in cheesemaking ability of milk by means of k-casein BB selection. In conclusion, in this project, selection of k-casein BB genotype markedly enhanced cheese-making properties of milk, providing an impetus to include milk coagulation traits in genetic selection and breeding programs for dairy cattle.
Resumo:
In this thesis we have presented some aspects of the nonlinear dynamics of Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control and delay induced multistability.We have chosen diode pumped Nd:YAG laser with intracavity KTP crystal operating with two mode and three mode output as our model system.Different types of orientation for the laser cavity modes were considered to carry out the studies. For laser operating with two mode output we have chosen the modes as having parallel polarization and perpendicular polarization. For laser having three mode output, we have chosen them as two modes polarized parallel to each other while the third mode polarized orthogonal to them.
Resumo:
A new method to obtain digital chaos synchronization between two systems is reported. It is based on the use of Optically Programmable Logic Cells as chaos generators. When these cells are feedbacked, periodic and chaotic behaviours are obtained. They depend on the ratio between internal and external delay times. Chaos synchronization is obtained if a common driving signal feeds both systems. A control to impose the same boundary conditions to both systems is added to the emitter. New techniques to analyse digital chaos are presented. The main application of these structures is to obtain secure communications in optical networks.
Resumo:
We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
We report a detailed numerical investigation of a prototype electrochemical oscillator, in terms of high-resolution phase diagrams for an experimentally relevant section of the control (parameter) space. The prototype model consists of a set of three autonomous ordinary differential equations which captures the general features of electrochemical oscillators characterized by a partially hidden negative differential resistance in an N-shaped current-voltage stationary curve. By computing Lyapunov exponents, we provide a detailed discrimination between chaotic and periodic phases of the electrochemical oscillator. Such phases reveal the existence of an intricate structure of domains of periodicity self-organized into a chaotic background. Shrimp-like periodic regions previously observed in other discrete and continuous systems were also observed here, which corroborate the universal nature of the occurrence of such structures. In addition, we have also found a structured period distribution within the order region. Finally we discuss the possible experimental realization of comparable phase diagrams.
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.