989 resultados para STAPHYLOCOCCUS AUREOS - INVESTIGACIONES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staph- ylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. How- ever, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with meth- icillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a prema- ture stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of pro- tein-truncating mutations are highly unusual. Our results demon- strate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired healing is common in wounds infected with the major human pathogen Staphylococcus aureus, although the underlying mechanisms are poorly understood. Here, we show that S.aureus lipoteichoic acid (LTA) inhibits platelet aggregation caused by physiological agonists and S. aureus and reduced platelet thrombus formation in vitro. The presence of D-alanine on LTA is necessary for the full inhibitory effect. Inhibition of aggregation was blocked using a monoclonal anti-platelet activating factor receptor (PafR) antibody and Ginkgolide B, a well-defined PafR antagonist, demonstrating that the LTA inhibitory signal occurs via PafR. Using a cyclic AMP (cAMP) assay and a western blot for phosphorylated VASP, we determined that cAMP levels increase upon platelet incubation with LTA, an effect which inhibits platelet activation. This was blocked when platelets were preincubated with Ginkgolide B. Furthermore, LTA reduced haemostasis in a mouse tail-bleed assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. Principal Findings We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). Significance This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 3-oxo-C12-HSL, tetramic acid and tetronic acid analogues was synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were non-competitive inhibitors of the auto-inducing peptide (AIP)-activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as negative allosteric modulators and are exemplified by 3-tetradecanoyltetronic acid 17 which reduced nasal cell colonization and arthritis in a murine infection model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype–phenotype mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to the innate defences of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common coloniser of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent anti-microbial activity. The mechanisms by which S. aureus is able to resist such defences in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates efflux of radiolabelled cholic acid in both S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated survival of S. aureus in an anaerobic three stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Staphylococcus aureus to develop multidrug resistance is well documented, and the antibiotic resistance showed by an increasing number of bacteria has shown the need for alternative therapies to treat infections, photodynamic therapy (PDT) being a potential candidate. The aim of this study was to determine the effect of photodynamic therapy as a light-based bactericidal modality to eliminate Staphylococcus aureus. The study investigated a technique based on a combination of light and a photosensitizer that is capable of producing oxidative species to induce a cytotoxic effect. A Staphylococcus aureus suspension was exposed to a light emitting diode (LED) emitting at 628 nm, 14.6 mW/cm(2), and energy density of 20J/cm(2), 40J/cm(2), or 60 J/cm(2) in the presence of different porphyrin concentrations (PhotogemA (R)). Three drug concentrations were employed: 12 mu l/ml, 25 mu l/ml, and 50 mu l/ml. The treatment response was evaluated by the number of bacterial colony forming units (CFU) after light exposure. The results indicated that exposure to 60 J/cm(2) eliminated 100% (10 log(10) scales) of bacteria, on average. The best PDT response rate to eliminate Staphylococcus aureus was achieved with exposure to LED light in combination with the photosensitizer at concentrations ranging from 25 mu l/ml to 50 mu l/ml. These data suggest that PDT has the potential to eliminate Staphylococcus aureus in suspension and indicates the necessary drug concentration and light fluency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strain of Staphylococcus isolated by Dr. Fekete at the Sandia National Laboratory toxic metal dumping site in Sandia, New Mexico. has been found to reduce toxic Cr(VI) to the less toxic Cr(IlI) state. We have ascertained the environmental parameters for optimal bacterial growth and Cr(VI) reduction. This knowledge may be employed in a comprehensive bioremediation scheme designed to accelerate natural reparation of that Sandia ecosystem. In addition we have investigated the genetic and enzymatic basis for this Cr(VI) reducing ability. This information may allow us to create more effective bioremediation schemes based on the comprehensive knowledge of enzyme and gene function. Preliminary investigations have been carried out toward this end which may serve as the basis for a more thorough investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response surface methodology was used to optimize the fermentation medium for enhancing naringinase production by Staphylococcus xylosus. The first step of this process involved the individual adjustment and optimization of various medium components at shake flask level. Sources of carbon (sucrose) and nitrogen (sodium nitrate), as well as an inducer (naringin) and pH levels were all found to be the important factors significantly affecting naringinase production. In the second step, a 22 full factorial central composite design was applied to determine the optimal levels of each of the significant variables. A second-order polynomial was derived by multiple regression analysis on the experimental data. Using this methodology, the optimum values for the critical components were obtained as follows: sucrose, 10.0%; sodium nitrate, 10.0%; pH 5.6; biomass concentration, 1.58%; and naringin, 0.50% (w/v), respectively. Under optimal conditions, the experimental naringinase production was 8.45 U/mL. The determination coefficients (R 2) were 0.9908 and 0.9950 for naringinase activity and biomass production, respectively, indicating an adequate degree of reliability in the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To investigate the relative importance of methicillin resistant Staphylococcus aureus (MRSA) in the community in Melbourne by describing circulating S. aureus strains and infection characteristics.

Methods: Patients with any community-onset S. aureus infection were identified via clinical specimens submitted to a community-based pathology service in 2006. The referring doctors confirmed community onset and defined site and severity of each infection. Patient isolates were characterised by antibiotic resistance subtype and presence of the Panton-Valentine leukocidin gene (pvl).

Results: Between April and September 2006, 2,094 S. aureus isolates were processed. Of these, 133 (6.4%) were multiresistant MRSA (mMRSA) and 110 (5.3%) were resistant to less than 3 non-betalactam antibiotics (non-multiresistant MRSA or nmMRSA). We followed-up all nmMRSA (34) and mMRSA (15) confirmed community-onset infections, and a random subset of eligible patients with MSSA infections (57), for whom clinical data were available from referring doctors (82% response).

The majority of isolates were from skin infections (99/106), but drainage was performed in less than one third of cases (29/99). Antibiotics were prescribed for 89% (95%CI: 82, 94) of infections. The isolates were resistant to the prescribed antibiotic 100% of the time for mMRSA infections and 80% for nmMRSA. Those with infections caused by MRSA had on average one additional visit to their doctor compared with MSSA infections.

Ten nmMRSA clones were identified, including one new pvl positive nmMRSA. Of the 29 nmMRSA isolates, 14 were pvl positive (48%; 95%CIs: 30%, 66%) compared with 16% of MSSA and 0% mMRSA.

Patients with an infection caused by pvl positive strains (23) were younger ((mean age 23 years (95%CI: 16, 30) compared with the 55 years (95%CI: 50, 61)). Infection site also varied with presence of pvl; more pvl positive infections were found in the axilla (17.9% compared with 0%) and head and neck (35.7% compared with 8.2%), and less for the leg or foot (21.4% compared with 55.7%).

Conclusions: We estimate that 3.5% of community-onset S. aureus infections in Melbourne in 2006 were caused by MRSA, and 70 to 90% of patients with MRSA infections were treated initially with antibiotics to which their isolate was resistant. pvl positive isolates of S. aureus were associated with younger age and axillary or head and neck infections.