884 resultados para SIO2-FILMS
Resumo:
he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.
Resumo:
We find that the use of V(100) buffer layers on MgO(001) substrates for the epitaxy of FePd binary alloys yields to the formation at intermediate and high deposition temperatures of a FePd¿FeV mixed phase due to strong V diffusion accompanied by a loss of layer continuity and strong increase of its mosaic spread. Contrary to what is usually found in this kind of systems, these mixed phase structures exhibit perpendicular magnetic anisotropy (PMA) which is not correlated with the presence of chemical order, almost totally absent in all the fabricated structures, even at deposition temperatures where it is usually obtained with other buffer layers. Thus the observed PMA can be ascribed to the V interdiffusion and the formation of a FeV alloy, being the global sample saturation magnetization also reduced.
Resumo:
We present an analytical model to interpret nanoscale capacitance microscopy measurements on thin dielectric films. The model displays a logarithmic dependence on the tip-sample distance and on the film thickness-dielectric constant ratio and shows an excellent agreement with finite-element numerical simulations and experimental results on a broad range of values. Based on these results, we discuss the capabilities of nanoscale capacitance microscopy for the quantitative extraction of the dielectric constant and the thickness of thin dielectric films at the nanoscale.
Resumo:
The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
Microstructural features of La2/3Ca1/3MnO3 layers of various thicknesses grown on top of 001 LaAlO3 substrates are studied by using transmission electron microscopy and electron energy loss spectroscopy. Films are of high microstructural quality but exhibit some structural relaxation and mosaicity both when increasing thickness or after annealing processes. The existence of a cationic segregation process of La atoms toward free surface has been detected, as well as a Mn oxidation state variation through layer thickness. La diffusion would lead to a Mn valence change and, in turn, to reduced magnetization.
Resumo:
An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.
Resumo:
A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.
Resumo:
Different aspects of the structure-magnetism and morphology-magnetism correlation in the ultrathin limit are studied in epitaxial Fe films grown on MgO(001). In the initial stages of growth the presence of substrate steps, intrinsically higher than an Fe atomic layer, prevent the connection between Fe islands and hence the formation of large volume magnetic regions. This is proposed as an explanation to the superparamagnetic nature of ultrathin Fe films grown on MgO in addition to the usually considered islanded, or Vollmer-Weber, growth. Using this model, we explain the observed transition from superparamagnetism to ferromagnetism for Fe coverages above 3 monolayers (ML). However, even though ferromagnetism and magnetocrystalline anisotropy are observed for 4 ML, complete coverage of the MgO substrate by the Fe ultrathin films only occurs around 6 ML as determined by polar Kerr spectra and simulations that consider different coverage situations. In annealed 3.5 ML Fe films, shape or configurational anisotropy dominates the intrinsic magnetocrystalline anisotropy, due to an annealing induced continuous to islanded morphological transition. A small interface anisotropy in thicker films is observed, probably due to dislocations observed at the Fe¿MgO(001) interface.