970 resultados para Rare collisions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collisions of the isocharged sequence ions of q=6 (C6+, N6+, O6+, F6+, Ne6+, Ar6+, and Ca6+), q=7 (F7+, Ne7+, S7+, Ar7+, and Ca7+), q=8 (F8+, Ne8+, Ar8+, and Ca8+), q=9 (F9+, Ne9+, Si9+, S9+, Ar9+, and Ca9+) and q=11 (Si11+, Ar11+, and Ca11+) with helium at the same velocities were investigated. The cross-section ratios of the double-electron transfer (DET) to the single-electron capture (SEC) sigma(DET)/sigma(SEC) and the true double-electron capture (TDC) to the double-electron transfer sigma(TDC)/sigma(DET) were measured. It shows that for different ions in an isocharged sequence, the experimental cross-section ratio sigma(DET)/sigma(SEC) varies by a factor of 3. The results confirm that the projectile core is another dominant factor besides the charge state and the collision velocity in slow (0.35-0.49v(0); v(0) denotes the Bohr velocity) highly charged ions (HCIs) with helium collisions. The experimental cross-section ratio sigma(DET)/sigma(SEC) is compared with the extended classical over-barrier model (ECBM) [A. Barany , Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985)], the molecular Coulombic barrier model (MCBM) [A. Niehaus, J. Phys. B 19, 2925 (1986)], and the semiempirical scaling laws (SSL) [N. Selberg , Phys. Rev. A 54, 4127 (1996)]. It also shows that the projectile core properties affect the initial capture probabilities as well as the subsequent relaxation of the projectiles. The experimental cross-section ratio sigma(TDC)/sigma(DET) for those lower isocharged sequences is dramatically affected by the projectile core structure, while for those sufficiently highly isocharged sequences, the autoionization always dominates, hence the cross-section ratio sigma(TDC)/sigma(DET) is always small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of the isospin dependent in-medium nucleon-nucleon cross section and the MomentumDependent Interaction(MDI) on the isotope scaling have been investigated within the Isospin dependent Quantum Molecular Dynamics Model(IQMD). The results show that both the isospin dependent in-medium nucleon-nucleon cross section and the momentum interaction reduce the isoscaling parameter a appreciably, which means they decrease the dependence of yield ratios of two systems on the isospin difference between two systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cooling storage ring, to be built at Lanzhou, will be able to deliver heavy ion beams up to uranium up to 0.52 GeV/u. It is expected to make considerable contribution to nuclear EOS study in the high net baryon-density region. With a relativistic transport model, we performed simulations for U+U collisions with different orientations. It is shown that by combining the forward neutron multiplicity and an event-wise elliptic flow selection, it is possible to identify the tip - tip and body - body head-on collisions. The effective identification of these two extreme configurations will allow us to study the EOS at the highest baryon density in the U+U collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to expand the solid angle for imaging of electrons in ion-atom collisions, we designed a complex Helmholtz coils composed of four single coils. Theoretical simulations were carried out to optimize the arrangement of the coils. The complex is constructed according to the theoretical analysis, and the magnetic fields were measured for interested regions. The measured results show that the relative uniformity of the magnetic fields is +/- 0.6%, which satisfies the requirements of collision experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single charge transfer process in He-3(2+)+He-4 collisions is investigated using the quantum-mechanical molecular-orbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6 keV and 10 keV for the projectile He-3(2+). Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative partial cross sections for C-13(6+)-Ar collisions at 4.15-11.08 keV/u incident energy are measured. The cross-section ratios sigma(2E)/sigma(SC), sigma(3E)/sigma(SC), sigma(4E)/sigma(SC) and sigma(5E)/sigma(SC) are approximately the constants of 0.51 +/- 0.05, 0.20 +/- 0.03, 0.06 +/- 0.03 and 0.02 +/- 0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (sigma(ME)/sigma(SC) as high as 0.79 +/- 0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of C-13(6+)-Ne collisions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The history of experimental study on beta-delayed proton decays in the rare-earth region was simply reviewed. The physical results of the beta-delayed proton decays obtained at IMP, Lanzhou over the last 10 years were summarized, mainly including the first observation of 9 new beta-delayed proton precursors along the odd-Z proton drip line and the new data for 2 waiting-point nuclei in the rp-process. The results were compared and discussed with different nuclear model calculations. Finally, the perspective in near future was briefly introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-electron processes are investigated for 17.9-120keV/u C1+, 30-323 keV/u C2+, 120-438 keV/u C3+, 287-480keV/u C4+ incident on a helium target. The cross-section ratios of double electron (DE) process to the total of the single electron (SE) and the double electron process (i.e. SE+DE), the direct double electron (DDI) to the direct single ionization (DSI) as well as the contributions of DDI to DE and of TI to DE are measured using coincidence techniques. The energy and charge state dependences of the measured cross-section ratios are studied and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the IBUU transport model, flipping of the symmetry potential in heavy-ion collisions is studied. It is found that there exist flipping of the symmetry potential in the isospin fractionation, the single neutron to proton ratio, the double neutron to proton ratio and the neutron-proton differential flow from lower to higher incident energies. The flipping of the symmetry potential results from the change of the relative magnitude of the hard and soft symmetry energies at lower and higher densities. Future observations of the flipped symmetry potential in experiment will help the study of the density-dependent symmetry energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of phase relaxation on coherent superpositions of rotating clockwise and anticlockwise wave packets in the regime of strongly overlapping resonances of the intermediate complex. Such highly excited deformed complexes may be created in binary collisions of heavy ions, molecules, and atomic clusters. It is shown that phase relaxation leads to a reduction of the interference fringes, thus mimicking the effect of decoherence. This reduction is crucial for the determination of the phase-relaxation width from the data on the excitation function oscillations in heavy-ion collisions and bimolecular chemical reactions. The difference between the effects of phase relaxation and decoherence is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-selective single electron capture cross sections are measured by recoil ion momentum spectroscopy technique for He2+ on He at 30 keV incident energy. The cross sections for capture into ground and excited states are obtained and compared to classical model calculations as well as to the quantum mechanical calculations. The experimental results are in good agreement with quantum mechanical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied systematically the reaction dynamics induced by neutron-halo nuclei and proton-halo nuclei within the isospin dependent quantum molecular dynamics, such as the effects of loose bound halo-nuclei on the fragmentation reaction and momentum dissipation for different colliding systems with different beam energies and different impact parameters. In order to emphasize the roles of neutron-halo nucleus B-19 and proton-halo nucleus Al-23 on the reaction dynamics we also calculated the the reaction dynamics induced by the stable nuclei F-19 and Na-23 with equal mass under identical incident channel conditions. Based on the comparison of results of reaction dynamics induced by halo-nucleus colliding systems and stable nucleus collidinmg systems we found that the roles of loose bound halo-nucleus structure on the fragmentation multiplicity and nuclear stopping (momentum dissipation) are important for all of colliding systems with different beam energies and minor impact parameters, such as, the loose bound halo-nuclei structure increases the fragmentation multiplicity, but reduces the nuclear stopping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-section ratios of double-, triple-, quadruple-, and the total multi-electron processes to the single electron capture process sigma(DE)/sigma(SC), sigma(TE)/sigma(SC), sigma(QE)/sigma(SC) and sigma(ME)/sigma(SC)) as well as the relative ratios among reaction channels in double-electron active, triple-electron active and quadruple- electron active are measured in C-13(6+) -Ne collision in the energy region of 4.15-11.08 keV/u by employing position-sensitive and time-of-flight coincident techniques. It is determined that the cross-section ratios sigma(DE)/sigma(SC), sigma(TE)/sigma(SC), sigma(QE)/sigma(SC) and sigma(ME)/sigma(SC) are approximately the constants of 0.20 +/- 0.03, 0.16 +/- 0.04, 0.06 +/- 0.02 and 0.42 +/- 0.05. These values are obviously smaller than the predictions of the molecular Coulomb over-the-barrier model (MCBM) [J. Phys. B 23 (1990) 4293], the extended classical over-the-barrier model (ECBM) [J. Phys. B 19 (1986) 2925] and the semiempirical scaling laws (SL) [Phys. Rev. A 54 (1996) 4127]. However, the relative ratios among partial processes of DE, TE and QE are found to depend on collision energy, which suggests that the collision dynamics depends on the collision velocity. The limitation of velocity-independent character of ECBM, MCBM and SL is undoubtedly shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isospin degree of freedom is inserted into the momentum dependent interaction in the quantum molecular dynamics model to obtain an isospin dependent momentum interaction given in a form practically usable in isospin dependent quantum molecular dynamics model. We investigate the entrance channel effects for the role of isospin momentum dependent interaction on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the isospin dependent momentum interaction induces a significant reduction of isospin fractionation ratio under all entrance channel conditions. However the strong dependence of isospin fractionation ratio on the symmetry potential is preserved after considering the isospin degree of freedom in the momentum dependent interaction.