950 resultados para Online services using open-source NLP tools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workshop at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Already one-third of the human population uses social media on a daily basis. The biggest social networking site Facebook has over billion monthly users. As a result, social media services are now recording unprecedented amount of data on human behavior. The phenomenon has certainly caught the attention of scholars, businesses and governments alike. Organizations around the globe are trying to explore new ways to benefit from the massive databases. One emerging field of research is the use of social media in forecasting. The goal is to use data gathered from online services to predict offline phenomena. Predicting the results of elections is a prominent example of forecasting with social media, but regardless of the numerous attempts, no reliable technique has been established. The objective of the research is to analyze how accurately the results of parliament elections can be forecasted using social media. The research examines whether Facebook “likes” can be effectively used for predicting the outcome of the Finnish parliament elections that took place in April 2015. First a tool for gathering data from Facebook was created. Then the data was used to create an electoral forecast. Finally, the forecast was compared with the official results of the elections. The data used in the research was gathered from the Facebook walls of all the candidates that were running for the parliament elections and had a valid Facebook page. The final sample represents 1131 candidates and over 750000 Facebook “likes”. The results indicate that creating a forecast solely based on Facebook “likes” is not accurate. The forecast model predicted very dramatic changes to the Finnish political landscape while the official results of the elections were rather moderate. However, a clear statistical relationship between “likes” and votes was discovered. In conclusion, it is apparent that citizens and other key actors of the society are using social media in an increasing rate. However, the volume of the data does not directly increase the quality of the forecast. In addition, the study faced several other limitations that should be addressed in future research. Nonetheless, discovering the positive correlation between “likes” and votes is valuable information that can be used in future studies. Finally, it is evident that Facebook “likes” are not accurate enough and a meaningful forecast would require additional parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet of Things or IoT is revolutionizing the world we are living in, similarly the way Internet and the web did few decades ago. It is changing how we interact with the things surrounding us. Electronic health and remote patient monitoring are the ways of utilizing these technological improvements towards the healthcare. There are many applications of IoT in eHealth such as, it will open the gate to provide healthcare to the remote areas of the world, where healthcare through traditional hospital systems cannot be provided. To connect these new eHealth IoT systems with the existing healthcare information systems, we can use the existing interoperability standards commonly used in healthcare information systems. In this thesis we implemented an eHealth IoT system based on Health Level 7 interoperability standard for continuous data transmission. There is not much previous work done in implementing the HL7 for continuous sensor data transmission. Some of the previous work was limited to sensors which are not continuous in nature and some of it is only theatrical architecture. This thesis aims to prove that it is possible to implement an eHealth IoT system by using sensors which require continues data transmission, such as respiratory sensors, and to connect it with the existing eHealth information system semantically by using HL7 interoperability standard. This system will be beneficial in implementing eHealth IoT systems for those patients, who requires continuous healthcare personal monitoring. This includes elderly people and patients, whose health need to be monitored constantly. To implement the architecture, HL7 v2.5 is selected due to its ease of implementation and low size. We selected some open source technologies because of their open licenses and large developer community. We will also review the most efficient technology available in every layer of eHealth IoT system and will propose an efficient system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’enseignement des sciences est capital dès l’école primaire, mais est souvent délaissé. Les musées scientifiques peuvent palier à cette lacune en offrant des ressources éducatives concrètes, dont les programmes éducatifs. Cette recherche détermine l’impact d’une animation pédagogique de la Biosphère sur certaines conceptions d’élèves du deuxième cycle du primaire. La chercheuse a opté pour une recherche qualitative et la méthode choisie est l’étude de cas, de type exploratoire. Des élèves d’une classe ont participé à l’étude. Ils ont assisté à une visite muséale, insérée au sein d’une séquence didactique. À l’aide de plusieurs outils de collecte de données (questionnaires, entrevues et observations), la chercheuse a été en mesure d’identifier quatre niveaux de modification des conceptions d’élèves (évolution notable, une certaine évolution, stabilité des conceptions, confusion des conceptions). Enfin, elle suggère quelques pistes d’amélioration à la Biosphère afin de maximiser l’impact de la visite sur l’apprentissage des élèves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'ensemble de mon travail a été réalisé grâce a l'utilisation de logiciel libre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les logiciels sont en constante évolution, nécessitant une maintenance et un développement continus. Ils subissent des changements tout au long de leur vie, que ce soit pendant l'ajout de nouvelles fonctionnalités ou la correction de bogues dans le code. Lorsque ces logiciels évoluent, leurs architectures ont tendance à se dégrader avec le temps et deviennent moins adaptables aux nouvelles spécifications des utilisateurs. Elles deviennent plus complexes et plus difficiles à maintenir. Dans certains cas, les développeurs préfèrent refaire la conception de ces architectures à partir du zéro plutôt que de prolonger la durée de leurs vies, ce qui engendre une augmentation importante des coûts de développement et de maintenance. Par conséquent, les développeurs doivent comprendre les facteurs qui conduisent à la dégradation des architectures, pour prendre des mesures proactives qui facilitent les futurs changements et ralentissent leur dégradation. La dégradation des architectures se produit lorsque des développeurs qui ne comprennent pas la conception originale du logiciel apportent des changements au logiciel. D'une part, faire des changements sans comprendre leurs impacts peut conduire à l'introduction de bogues et à la retraite prématurée du logiciel. D'autre part, les développeurs qui manquent de connaissances et–ou d'expérience dans la résolution d'un problème de conception peuvent introduire des défauts de conception. Ces défauts ont pour conséquence de rendre les logiciels plus difficiles à maintenir et évoluer. Par conséquent, les développeurs ont besoin de mécanismes pour comprendre l'impact d'un changement sur le reste du logiciel et d'outils pour détecter les défauts de conception afin de les corriger. Dans le cadre de cette thèse, nous proposons trois principales contributions. La première contribution concerne l'évaluation de la dégradation des architectures logicielles. Cette évaluation consiste à utiliser une technique d’appariement de diagrammes, tels que les diagrammes de classes, pour identifier les changements structurels entre plusieurs versions d'une architecture logicielle. Cette étape nécessite l'identification des renommages de classes. Par conséquent, la première étape de notre approche consiste à identifier les renommages de classes durant l'évolution de l'architecture logicielle. Ensuite, la deuxième étape consiste à faire l'appariement de plusieurs versions d'une architecture pour identifier ses parties stables et celles qui sont en dégradation. Nous proposons des algorithmes de bit-vecteur et de clustering pour analyser la correspondance entre plusieurs versions d'une architecture. La troisième étape consiste à mesurer la dégradation de l'architecture durant l'évolution du logiciel. Nous proposons un ensemble de m´etriques sur les parties stables du logiciel, pour évaluer cette dégradation. La deuxième contribution est liée à l'analyse de l'impact des changements dans un logiciel. Dans ce contexte, nous présentons une nouvelle métaphore inspirée de la séismologie pour identifier l'impact des changements. Notre approche considère un changement à une classe comme un tremblement de terre qui se propage dans le logiciel à travers une longue chaîne de classes intermédiaires. Notre approche combine l'analyse de dépendances structurelles des classes et l'analyse de leur historique (les relations de co-changement) afin de mesurer l'ampleur de la propagation du changement dans le logiciel, i.e., comment un changement se propage à partir de la classe modifiée è d'autres classes du logiciel. La troisième contribution concerne la détection des défauts de conception. Nous proposons une métaphore inspirée du système immunitaire naturel. Comme toute créature vivante, la conception de systèmes est exposée aux maladies, qui sont des défauts de conception. Les approches de détection sont des mécanismes de défense pour les conception des systèmes. Un système immunitaire naturel peut détecter des pathogènes similaires avec une bonne précision. Cette bonne précision a inspiré une famille d'algorithmes de classification, appelés systèmes immunitaires artificiels (AIS), que nous utilisions pour détecter les défauts de conception. Les différentes contributions ont été évaluées sur des logiciels libres orientés objets et les résultats obtenus nous permettent de formuler les conclusions suivantes: • Les métriques Tunnel Triplets Metric (TTM) et Common Triplets Metric (CTM), fournissent aux développeurs de bons indices sur la dégradation de l'architecture. La d´ecroissance de TTM indique que la conception originale de l'architecture s’est dégradée. La stabilité de TTM indique la stabilité de la conception originale, ce qui signifie que le système est adapté aux nouvelles spécifications des utilisateurs. • La séismologie est une métaphore intéressante pour l'analyse de l'impact des changements. En effet, les changements se propagent dans les systèmes comme les tremblements de terre. L'impact d'un changement est plus important autour de la classe qui change et diminue progressivement avec la distance à cette classe. Notre approche aide les développeurs à identifier l'impact d'un changement. • Le système immunitaire est une métaphore intéressante pour la détection des défauts de conception. Les résultats des expériences ont montré que la précision et le rappel de notre approche sont comparables ou supérieurs à ceux des approches existantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire de maîtrise a été rédigé dans l’objectif d’explorer une inégalité. Une inégalité dans les pratiques liées à la saisie et l’exploitation des données utilisateur dans la sphère des technologies et services Web, plus particulièrement dans la sphère des GIS (Geographic Information Systems). En 2014, de nombreuses entreprises exploitent les données de leurs utilisateurs afin d’améliorer leurs services ou générer du revenu publicitaire. Du côté de la sphère publique et gouvernementale, ce changement n’a pas été effectué. Ainsi, les gouvernements fédéraux et municipaux sont démunis de données qui permettraient d’améliorer les infrastructures et services publics. Des villes à travers le monde essayent d’améliorer leurs services et de devenir « intelligentes » mais sont dépourvues de ressources et de savoir faire pour assurer une transition respectueuse de la vie privée et des souhaits des citadins. Comment une ville peut-elle créer des jeux de données géo-référencés sans enfreindre les droits des citadins ? Dans l’objectif de répondre à ces interrogations, nous avons réalisé une étude comparative entre l’utilisation d’OpenStreetMap (OSM) et de Google Maps (GM). Grâce à une série d’entretiens avec des utilisateurs de GM et d’OSM, nous avons pu comprendre les significations et les valeurs d’usages de ces deux plateformes. Une analyse mobilisant les concepts de l’appropriation, de l’action collective et des perspectives critiques variées nous a permis d’analyser nos données d’entretiens pour comprendre les enjeux et problèmes derrière l’utilisation de technologies de géolocalisation, ainsi que ceux liés à la contribution des utilisateurs à ces GIS. Suite à cette analyse, la compréhension de la contribution et de l’utilisation de ces services a été recontextualisée pour explorer les moyens potentiels que les villes ont d’utiliser les technologies de géolocalisation afin d’améliorer leurs infrastructures publiques en respectant leurs citoyens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. (The site "1001 Questions," is available at http://teach-computers.org/learner.html). Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about "newspapers" already present in the knowledge base, Learner judges "newspaper" to be similar to "book" and "magazine." Further suppose that assertions "books contain information" and "magazines contain information" are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether "newspapers contain information." Because similarity between topics is computed based on what is already known about them, Learner exhibits bootstrapping behavior --- the quality of its questions improves as it gathers more knowledge. By summing evidence for and against posing any given question, Learner also exhibits noise tolerance, limiting the effect of incorrect similarities. The KA power of shallow semantic analogy from nearest neighbors is one of the main findings of this thesis. I perform an analysis of commonsense knowledge collected by another research effort that did not rely on analogical reasoning and demonstrate that indeed there is sufficient amount of correlation in the knowledge base to motivate using cumulative analogy from nearest neighbors as a KA method. Empirically, evaluating the percentages of questions answered affirmatively, negatively and judged to be nonsensical in the cumulative analogy case compares favorably with the baseline, no-similarity case that relies on random objects rather than nearest neighbors. Of the questions generated by cumulative analogy, contributors answered 45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control, no-similarity case 8% of questions were answered affirmatively, 60% negatively and 26% were marked as nonsensical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many online services access a large number of autonomous data sources and at the same time need to meet different user requirements. It is essential for these services to achieve semantic interoperability among these information exchange entities. In the presence of an increasing number of proprietary business processes, heterogeneous data standards, and diverse user requirements, it is critical that the services are implemented using adaptable, extensible, and scalable technology. The COntext INterchange (COIN) approach, inspired by similar goals of the Semantic Web, provides a robust solution. In this paper, we describe how COIN can be used to implement dynamic online services where semantic differences are reconciled on the fly. We show that COIN is flexible and scalable by comparing it with several conventional approaches. With a given ontology, the number of conversions in COIN is quadratic to the semantic aspect that has the largest number of distinctions. These semantic aspects are modeled as modifiers in a conceptual ontology; in most cases the number of conversions is linear with the number of modifiers, which is significantly smaller than traditional hard-wiring middleware approach where the number of conversion programs is quadratic to the number of sources and data receivers. In the example scenario in the paper, the COIN approach needs only 5 conversions to be defined while traditional approaches require 20,000 to 100 million. COIN achieves this scalability by automatically composing all the comprehensive conversions from a small number of declaratively defined sub-conversions.